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Abstract
Nearly all security attacks have one thing in common: they co-
erce the target program into performing actions that it was never
intended to perform. In short, they violate the program’s execu-
tion model. The execution model encompasses the Application
Binary Interface (ABI), higher-level specifications from the pro-
gram’s source programming language, and components specific to
the program — for example, which values a particular function
pointer may take. If this execution model were enforced, and only
program actions that the programmer intended were allowed, a ma-
jority of current security holes would be closed.

In this paper, we employ program shepherding [26] to enforce
a program’s execution model. Program shepherding monitors con-
trol flow in order to enforce a security policy. We use static and dy-
namic analyses to automatically build a custom security policy for a
target program which specifies the program’s execution model. We
have implemented our analyses in the DynamoRIO [4, 5] runtime
code modification system. The resulting system imposes minimal
or no performance overhead, operates on unmodified native bina-
ries, and requires no special hardware or operating system support.
Our static analyses require source code access but not recompila-
tion. The analysis process requires no user interaction, but is able
to build a strict enough policy to prevent all deviations from the
program’s control flow graph and nearly all violations of the call-
ing convention, greatly reducing the possibility of an unintended
program action.

1. INTRODUCTION
The greatest threat to our modern information infrastructure is

the remote exploitation of program vulnerabilities. The goal of
most security attacks is to gain unauthorized access to a computer
system by taking control of a vulnerable privileged program. This
is done by exploiting bugs that allow overwriting stored program
addresses with pointers to malicious code. Today’s most prevalent
attacks target buffer overflow and format string vulnerabilities.

Nearly all attacks have one thing in common: they coerce the
target program into performing actions that it was never intended
to perform. In short, they violate the execution model followed by
legitimate programs. The execution model encompasses the Appli-
cation Binary Interface (ABI) and higher-level specifications from
the program’s source programming language. The model also in-
corporates components specific to the program, for example, which
values a particular function pointer may take.

A program’s execution model is invariably narrower than that
imposed by the underlying hardware. As such, there is typically
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no efficient way to require that the rules of this execution model
be adhered to. The result is that the execution model becomes, in
practice, a convention rather than a strict set of rules. If this model
were enforced, and only program actions that the programmer in-
tended were allowed, a majority of current security holes would be
closed. For example, a common attack type overwrites a return ad-
dress to point to a malicious destination. This destination is not a
valid return target in the program’s execution model, and would be
disallowed by enforcement of the model.

Most security attacks target data storing program addresses. It
is unreasonable to try to stop all malevolent writes to memory con-
taining program addresses, because addresses are stored in many
different places and are legitimately manipulated by the applica-
tion, compiler, linker, and loader. Our model of security attacks
assumes that an attacker is able to exploit program vulnerabilities
to gain random write access to arbitrary memory locations in the
program address space.

In this paper, we employ program shepherding [26] to enforce a
program’s execution model. Instead of attempting to protect data,
program shepherding monitors control flow in order to enforce a se-
curity policy. We use static and dynamic analyses to automatically
build a custom security policy for a target program which specifies
the program’s execution model. This process requires no user in-
teraction, but is able to build a strict enough policy to prevent all
deviations from the program’s control flow graph and nearly all vi-
olations of the calling convention, greatly reducing the possibility
of an unintended program action.

We have implemented our analyses in the DynamoRIO [4, 5]
runtime code modification system. DynamoRIO executes a pro-
gram through copies of its code stored in a cache. This code cache
is the key to efficient, secure execution, because it allows many se-
curity checks to be performed only once, when the code is copied
to the cache. If the code cache is protected from malicious modi-
fication, future executions of the trusted cached code proceed with
no security overhead. A second key feature of DynamoRIO is the
creation of traces, hot streams of code that cross control flow tran-
sitions. Security checks on transitions can be elided when execu-
tion follows the trace. These features result in a secure system that
imposes minimal or no performance overhead, operates on unmod-
ified native binaries, and requires no special hardware or operating
system support. Our static analyses require source code access but
not recompilation.

The contributions of this paper are as follows:
� We demonstrate that enforcing a program’s execution model

can thwart many security attacks;
� We analyze features of the execution model that can be en-

forced with reasonable cost and those whose costs are unac-
ceptable;



� We show how to incorporate static analyses to automatically
extract features of the program’s execution model such as its
call graph;

� We identify aspects of enforcement that can be performed
and further enhanced dynamically;

� We present two different schemes for verifying that the call-
ing convention is followed;

� We give experimental evidence that the execution model can
be enforced efficiently and effectively using a runtime code
modification system.

In Section 2 we classify the types of security exploits that we are
aiming to prevent. The execution model and how to enforce it is
discussed in Section 3. Applying the enforcement policies using
program shepherding is described in Section 4, and our implemen-
tation is discussed in Section 5. We present experimental results
and the performance of our system in Section 6. We discuss related
work in Section 7 and conclude the paper in Section 8.

2. SECURITY EXPLOITS
This section provides some background on the types of security

exploits we are targeting. We classify security exploits based on
three characteristics: the program vulnerability being exploited, the
stored program address being overwritten, and the malicious code
that is then executed.

2.1 Program Vulnerabilities
The two most-exploited classes of program bugs involve buffer

overflows and format strings. Buffer overflow vulnerabilities are
present when a buffer with weak or no bounds checking is popu-
lated with user supplied data. A trivial example is unsafe use of
the C library functions strcpy or gets. This allows an attacker
to corrupt adjacent structures containing program addresses, most
often return addresses kept on the stack [9]. Buffer overflows af-
fecting a regular data pointer can actually have a more disastrous
effect by allowing a memory write to an arbitrary location on a sub-
sequent use of that data pointer. One particular attack corrupts the
fields of a double-linked free list kept in the headers of malloc
allocation units [25]. On a subsequent call to free, the list update
operation this � prev � next = this � next; will modify
an arbitrary location with an arbitrary value.

Format string vulnerabilities also allow attackers to modify ar-
bitrary memory locations with arbitrary values and often out-
rank buffer overflows in recent security bulletins [8, 30]. A for-
mat string vulnerability occurs if the format string to a function
from the printf family (

�
,f,s,sn � printf, syslog) is

provided or constructed from data from an outside source. The
most common case is when printf(str) is used instead of
printf("%s",str). The first problem is that attackers may in-
troduce conversion specifications to enable them to read the mem-
ory contents of the process. The real danger, however, comes from
the %n conversion specification which directs the number of char-
acters printed so far to be written back. The location where the
number is stored and its value can easily be controlled by an at-
tacker with type and width specifications, and more than one write
of an arbitrary value to an arbitrary address can be performed in a
single attack.

It is very difficult to prevent all exploits that allow address over-
writes, as they are as varied as program bugs themselves. In this
paper we assume that attackers can exploit a vulnerability that gives

them random write access to arbitrary addresses in the program ad-
dress space. In most security attacks modifying data is simply the
means to executing a sequence of instructions that will ultimately
compromise the whole system. Attackers induce this by overwrit-
ing a stored program address that will be used in an indirect control
transfer.

2.2 Stored Program Addresses
Security exploits can attack program addresses stored in many

different places. Buffer overflow attacks target addresses adjacent
to the vulnerable buffer. The classic return address attacks and local
function pointer attacks exploit overflows of stack allocated buffers.
Global data and heap buffer overflows also allow global function
pointer attacks and setjmp structure attacks. Data pointer buffer
overflows, malloc overflow attacks, and %n format string attacks
are able to modify any stored program address in the vulnerable
application — in addition to the aforementioned addresses, these
attacks target entries in the atexit list, .dtors destructor rou-
tines, and in the Global Offset Table (GOT) [14] of shared object
entries.

Program addresses are credibly manipulated by a number of en-
tities. For example, dynamic loaders patch shared object functions;
dynamic linkers update relocation tables; and language runtime
systems modify dynamic dispatch tables. Generally, these program
addresses are intermingled with and indistinguishable from data.
In such an environment, preventing a control transfer to malicious
code by stopping illegitimate memory writes is next to impossible.
It requires the cooperation of numerous trusted and untrusted en-
tities that need to check many different conditions and understand
high-level semantics in a complex environment. The resulting pro-
tection is only as powerful as the weakest link.

2.3 Malicious Code
Using the privileges of the application, an attacker can cause

damage by executing newly injected malicious code or by mali-
ciously reusing already present code. Currently, the first approach
is prevalently taken and attack code is implemented as new native
code that is injected in the program address space as data [31].
Modifying any stored program address to point to the introduced
code will trigger intrusion when that address is used for control
transfer. In our previous work [26] we have presented a system
with minimal overhead that eradicates this class of attacks; they
will not be discussed here.

It is also possible to reuse existing code by changing a stored
program address and constructing an activation record with suitable
arguments. For example, a simple but powerful attack changes a
function pointer to the C library function system, and arranges the
first argument to be an arbitrary shell command to be run. Note that
reuse of existing code can also include jumping into the middle of a
sandboxed application operation, bypassing the sandboxing checks
and executing the operation that was intended to be protected.

An attacker may be able to form higher-level malicious code by
introducing data carefully arranged as a chain of activation records,
so that on return from each function execution continues in the next
function of the chain [29]. The prepared activation record return
address points to the code in a function epilogue that shifts the stack
pointer to the following activation record and continues execution
in the next function.

Modifying the targets of a suitable sequence of indirect calls
as well as their arguments also may allow an attacker to produce
higher-level malicious code. Undetected sequential intrusions may
also allow orchestration of existing pieces of code to produce an
unintended malicious outcome.



3. EXECUTION MODEL ENFORCEMENT
The execution model of a program includes several components.

At the lowest level, the Application Binary Interface (ABI) spec-
ifies the register usage and calling conventions of the underlying
architecture, along with the operating system interface mechanism.
Higher-level conventions come from the source language of the
program in the form of runtime data structure usage and expected
interaction with the operating system and with system libraries. Fi-
nally, the program itself is intended by the programmer to perform
a limited set of actions.

Even the lowest level, the ABI, is not efficiently enforceable.
The underlying hardware has no support for ensuring that calls and
returns match, and it is prohibitively expensive to implement this
in software. For this reason, the execution model is a convention
rather than a strict set of rules. However, most security exploits
come from violations of the execution model. The most prevalent
attacks today involve overwriting a stored program address with a
pointer to injected malicious code. The transfer of control to that
code is not allowed under the program’s execution model. Enforc-
ing the model would thwart many security attacks.

Much work has been done on enforcing the execution
model’s specifications on data usage, from sandboxing the ad-
dress space [45] to enforcing non-executable privileges on data
pages [32] and stack pages [13]. However, these schemes have
significant performance costs, as restrictions on data usage are very
difficult to enforce efficiently. This is because memory references
all look very similar statically and must be disambiguated dynam-
ically. Distinguishing memory references requires expensive run-
time checks on every memory access.

Most security attacks target not just any data, but data storing
program addresses. Even limiting data protection to these loca-
tions, protecting the data is extremely difficult. We restrict our
enforcement of the execution model to the set of allowed control
transfers. We focus on control transfers, rather than on data, for
two reasons. First, control transfer specifications inhabit a much
smaller (and therefore reasonably managed) space than arbitrary
restrictions on data. And second, nearly all unintended program
actions surface as unintended control flow transfers, although they
may begin as abnormal data operations. Invariably, an attack that
overwrites data has as its goal a malicious transfer of control.

3.1 Context-Insensitive Policies
The degree of freedom of an attacker is given by the size of the

set of allowed values for an attacked stored program address. Ide-
ally, these sets should be singletons, because in a real program ex-
ecution at any point there is only one valid value (in the absence
of race conditions). Therefore, we aim to minimize the size of the
sets and convert them to singletons when possible. Our first aim
is to determine the points-to sets for function pointers by using an
accurate static analysis. We use a flow-insensitive (to allow for con-
currency) and context-insensitive analysis to gather the sets of valid
targets for indirect calls. Using that information we construct the
complete call graph for the program. Targets of return instructions
are then computed from the graph, since the instructions after caller
sites of a function constitute the only valid targets for its exit point.

Context-insensitive policies make an attacker’s life much more
difficult, narrowing potential attack targets from any instruction in
the program to a small handful. The program’s control-flow graph
and call graph can be enforced using only context-insensitive poli-
cies, as such graphs are themselves context-insensitive. However,
the execution model is more than the control flow graph. For one
thing, the model includes the calling convention, which restricts
each return to have only one target (the return site of the caller),

depending on the context. There are a number of schemes we can
use to reduce the size of allowed targets further.

If we assume that serious damage only occurs via system calls,
we can perform reachability analysis to identify the system calls
accessible from each of the functions. If different targets can reach
different system calls, then an attacker has a choice of action for
constructing a malicious sequence. However, if the system call sets
are all equivalent (in the best case all being empty), we can accept
any valid target, because changing a stored pointer from one value
to another provides no new abilities to an attacker.

3.2 Context-Sensitive Policies
Even the most accurate flow-sensitive and context-sensitive

static analysis will not produce singleton sets. However, dynamic
program transformations may be applied to further reduce the
points-to sets. We can try to partition the set of targets by dynami-
cally applying program transformations on the generated traces.

3.2.1 Selective Code Duplication
We can apply program specialization with respect tofunction

pointers passed as arguments, which is a common use case, that
way the target set of its later uses is a singleton set. Furthermore,
leaf functions can be partially inlined in traces from their callers,
therefore they are effectively reduced to singletons. A simple com-
pare with that singleton replaces the hashtable lookup if detection
of security violations is desired, otherwise it can be elided in a
trace. In order to reduce the degree of freedom of return overwrites,
leaf functions with large fan-in can be selectively cloned and thus
the return set of the original function is partitioned into smaller sets.
In general, by selectively duplicating code for each definition and
use of an indirect branch target, we can obtain selective flow and
context sensitivity in execution traces.

3.2.2 Full Context Sensitivity
Full context sensitivity with respect to return addresses may be

worth the performance hit, given that return address overwrites are
popular security exploit targets. There has been a lot of work on
protecting return addresses and on detecting changes in return ad-
dresses [9, 18, 41], which are discussed further in Section 7. Here
we present two techniques for detecting violations of the calling
convention. Our techniques rely on using registers that are isolated
from the program in order to provide secure storage without the
prohibitive performance cost (and concurrency issues) of unpro-
tecting memory, writing to it, and then re-protecting it. Program
shepherding’s complete control of all executed code allows us to
ensure that our stolen registers are never accessed by application
instructions.

Hash Value in Stolen Register. Violations of the calling con-
vention can be detected by keeping a single hash value that is occa-
sionally stored and later checked to ensure that the intervening calls
and returns were properly paired up. The hash is kept in a register
that is stolen from the application throughout its entire execution.
On a call, the value in the register is hashed using an invertible hash
function and the new value is written to the register. On a return,
the register value is passed through the inverse function and the
value prior to the call is restored. A different hash function per call
target is used. The idea is that the value can be stored in memory
and protected at some point (the “copy point”). Later in the same
function, after any number of calls, the value in the register can be
compared to the stored value (the “check point”). A discrepancy
indicates return address tampering: a different series of calls was
executed than should be allowed by the execution model.



If we assume that only system calls can cause serious damage to
a machine, then the copy and check points only need to occur in
each function that reaches a system call. The copy point is at the
start of the body of the function and the check point is immediately
prior to the call that reaches the system call. The final check point
is prior to the system call itself. Given that return addresses can
only be changed to target valid return sites (enforced by policies
described earlier), an attacker must arrive at the system call via
some call graph transition. By positioning check points prior to
every transition that moves toward a system call, calling convention
violations that might lead to malicious system call execution can be
thwarted.

Entire Call Stack. Intel’s processors have included a return
stack buffer (RSB) since the Pentium Pro. The RSB is of limited
size and is used as a branch predictor for return instructions. On
a call the return address is pushed onto the RSB, and on a return
the top RSB value is popped and used as the predicted target of the
return. Since the hardware is storing each return address, it is only
natural to propose using the RSB to enforce the calling convention.

Exposing the RSB to software might be done by allowing read
and write access. Then a program shepherding system could mon-
itor every call and return and insert code to handle underflow and
overflow and code to compare the RSB prediction to the real re-
turn address. On overflow, the RSB is copied to memory which is
then protected. On underflow, the most recent saved RSB copy is
written in to the RSB. For better performance only half of the RSB
is stored and swapped in, with the upper half being shifted down
on overflow, to prevent thrashing due to frequent minor call depth
changes.

A further level of hardware support would be to add traps for
underflow, overflow, and RSB misprediction. Then the software
need not impose instrumentation on every call and return; it would
simply need to handle the traps.

As modern processors do not allow software control of the RSB,
we have implemented a call stack using the SIMD registers of the
Pentium 4. Most programs do not make use of these multime-
dia processor extensions. The Pentium 4 SSE2 extensions include
eight 128-bit registers (the XMM registers) that can hold integral
values. For a program that does not use these registers, they can be
stolen and used as a call stack. Section 5.4 discusses details of our
implementation of this stack.

4. PROGRAM SHEPHERDING
Our execution model enforcement employs security policies for

program shepherding, which monitors all control transfers to en-
sure that each satisfies a given policy. This allows us to ignore the
complexities of various vulnerabilities and the difficulties in pre-
venting illegitimate writes to stored program addresses. Instead,
we catch a large class of security attacks by preventing execution
of malevolent code. We do this by employing the three program
shepherding techniques: restricted code origins, restricted control
transfers, and un-circumventable sandboxing. The following sec-
tions describe these techniques.

4.1 Restricted Code Origins
In monitoring all code that is executed, each instruction’s ori-

gins are checked against a security policy to see if it should be
given execute privileges. Code origins are classified into these cat-
egories: from the original image on disk and unmodified, dynami-
cally generated but unmodified since generation, and code that has
been modified. Finer distinctions could also be made.

For our prototype, we limit execution model enforcement to

those models that do not allow self-modifying code. This is en-
forced by keeping all original code write-protected and monitor-
ing all system calls that change page protection. Program shep-
herding’s un-circumventable sandboxing, described in Section 4.3,
guarantees that these system call checks will never by bypassed.
Checking code origins involves negligible overhead because code
need only be checked once prior to insertion into the code cache.
Once in the cache no checks are executed.

4.2 Restricted Control Transfers
Given that we limit execution models to those that disallow self-

modifying code, direct control transfers will always perform as the
program intends, as they are part of the code itself and cannot be
modified by an attacker.

Indirect calls, indirect jumps, and returns obtain their targets
from data, which can be modified by an attacker. Program shep-
herding allows arbitrary restrictions to be placed on control trans-
fers in an efficient manner. Enforcing the execution model involves
allowing each branch to jump only to a specified set of targets.

Our static analyses produce context-insensitive policies, which
can be easily enforced with minimal overhead. This is because
context-insensitive policies are always valid after initial verifica-
tion, and thus can be cached and cheaply evaluated with minimal
execution overhead. Policies that only examine the target of a con-
trol flow transition are the cheapest, as a shared hashtable per in-
direct transfer type can be used to look up the target for valida-
tion [26]. Our policies need to examine both the source and the tar-
get of a transition, which can be made as efficient as only checking
the target by using a separate hashtable for each source location.
The space drawback of this scheme is minor as equivalent target
sets can be shared, and furthermore, the hashtables can be precom-
puted to be kept quite small without increase in access time.

4.3 Un-Circumventable Sandboxing
Program shepherding provides direct support for restricting code

origins and control transfers. Execution can be restricted in other
ways by adding sandboxing checks on other types of operations.
With the ability to monitor all transfers of control, program shep-
herding is able to guarantee that these sandboxing checks cannot
be bypassed. Sandboxing without this guarantee can never provide
true security — if an attack can gain control of the execution, it can
jump straight to the sandboxed operation, bypassing the checks. In
addition to allowing construction of arbitrary security policies, this
guarantee is used to enforce the other two program shepherding
techniques by protecting the shepherding system itself (see Sec-
tion 5.2).

5. IMPLEMENTATION

5.1 DynamoRIO
Recent advances in dynamic optimization have focused on low-

overhead methods for examining execution traces for the purpose
of optimization. This infrastructure provides the exact functional-
ity needed for efficient program shepherding. Dynamic optimizers
begin with an interpretation engine. To reduce the emulation over-
head, native translations of frequently executed code are cached so
they can be directly executed in the future. For a security system,
caching means that many security checks need be performed only
once, when the code is copied to the cache. If the code cache is pro-
tected from malicious modification, future executions of the trusted
cached code proceed with no security or emulation overhead. A
performance-critical inner loop will execute without a single addi-
tional instruction beyond the original application code.
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Figure 1: Flow chart of the DynamoRIO system infrastructure.
Dark shading indicates application code. Note that the context
switch is simply between the code cache and DynamoRIO; ap-
plication code and DynamoRIO code all runs in the same pro-
cess and address space. Dotted lines indicate the performance-
critical cases where control must leave the code cache and re-
turn to DynamoRIO.

We decided to build our program shepherding system as an ex-
tension to a dynamic optimizer called DynamoRIO [4, 5]. Dy-
namoRIO is based on an IA-32 port of Dynamo [2]. DynamoRIO’s
optimizations are still under development. However, this is not a
hindrance for our security purposes, as its performance is already
reasonable for many applications (see Section 6.2). DynamoRIO is
implemented for both IA-32 Windows and Linux, and is capable of
running large desktop applications.

A flow chart showing the operation of DynamoRIO is presented
in Figure 1. The figure concentrates on the flow of control in and
out of the code cache, which is the bottom portion of the figure.
The copied application code looks just like the original code with
the exception of its control transfer instructions, which are shown
with arrows in the figure.

DynamoRIO copies basic blocks (sequences of instructions end-
ing with a single control transfer instruction) into a code cache and
executes them natively. At the end of each block the application’s
machine state must be saved and control returned to DynamoRIO
(a context switch) to copy the next basic block. If a target basic
block is already present in the code cache, and is targeted via a di-
rect branch, DynamoRIO links the two blocks together with a direct
jump. This avoids the cost of a subsequent context switch.

Indirect branches cannot be linked in the same way because
their targets may vary. To maintain transparency, original program
addresses must be used wherever the application stores indirect
branch targets (for example, return addresses for function calls).
These addresses must be translated into their corresponding code
cache addresses in order to jump to the target code. This trans-
lation is performed as a fast hashtable lookup. Security policies
that restrict indirect branch targets are put in place by varying this
hashtable lookup.

To improve the efficiency of indirect branches, and to achieve
better code layout, basic blocks that are frequently executed in
sequence are stitched together into a unit called a trace. When
connecting beyond a basic block that ends in an indirect branch,
a check is inserted to ensure that the actual target of the branch
will keep execution on the trace. This check is much faster than
the hashtable lookup, but if the check fails the full lookup must be
performed. The superior code layout of traces usually amortizes
the overhead of creating them and often speeds up the program [2,
33]. For context-insensitive security policies, no extra checks are
required when execution continues across an indirect branch in a
trace.

Page Type DynamoRIO mode Application mode
Application code R R
Application data RW RW
DynamoRIO code cache RW R (E)
DynamoRIO code R (E) R
DynamoRIO data RW R

Table 1: Privileges of each type of memory page belonging to
the application process. R stands for Read, W for Write, and
E for Execute. We separate execute privileges here to make it
clear what code is allowed by DynamoRIO to execute.

5.2 Protecting DynamoRIO
Program shepherding could be defeated by attacking Dy-

namoRIO’s own data structures, including the code cache, which
are in the same address space as the application. To secure Dy-
namoRIO, we protect its memory pages. We divide execution
into two modes: DynamoRIO mode and application mode. Dy-
namoRIO mode corresponds to the top half of Figure 1. Applica-
tion mode corresponds to the bottom half of Figure 1, including the
code cache and the DynamoRIO routines that are executed with-
out performing a context switch back to DynamoRIO. For the two
modes, we give each type of memory page the privileges shown in
Table 1. DynamoRIO data includes the indirect branch hashtable
and other data structures.

All application and DynamoRIO code pages are write-protected
in both modes. Application data is of course writable in application
mode, and there is no reason to protect it from DynamoRIO, so it
remains writable in DynamoRIO mode. DynamoRIO’s data and
the code cache can be written to by DynamoRIO itself, but they
must be protected during application mode to prevent inadvertent
or malicious modification by the application.

If a basic block copied to the code cache contains a system
call that may change page privileges, the call is sandboxed to
prevent changes that violate Table 1. Program shepherding’s
un-circumventable sandboxing guarantees that these system call
checks are executed. Because the DynamoRIO data pages and the
code cache pages are write-protected when in application mode,
and we do not allow application code to change these protections,
we guarantee that DynamoRIO’s state cannot be corrupted.

We should also protect DynamoRIO’s Global Offset Table
(GOT) [14] by binding all symbols on program startup and then
write-protecting the GOT, although our prototype implementation
does not yet do this. Also, there are some pathological attacks that
could be performed with multiple application threads that we have
not yet solved efficiently [26].

5.3 Call Graph construction
Constructing the call graph for a C program in the presence of

indirect calls requires use of pointer analysis to disambiguate be-
tween the potential values of the used function pointers. Research
on pointer analyses [39, 10, 23, 22, 27] offer different tradeoffs
between accuracy and scalability. We have employed a context-
insensitive, flow-insensitive Andersen-style points-to analysis [39,
16] while scaling very well to the size of our applications. Our
current implementation is currently inaccurate only in regards to
treatment of struct/union fields which are ignored and only the
base object is looked at and may produce larger sets. According to
the notion in [23] it is field-independent similar to the works [39,
10, 38]. However, for call-graph construction field-based analyses
that ignore the base [27] are suggested in [22, 27] to be more accu-
rate. Here we will discuss the performance of the field-independent



instance of our analysis.
The points-to information in our system is used at runtime and

therefore needs to be efficiently propagated and in case of position
independent code relocated at run time. Use of dynamic libraries
poses interesting problems in respect to combining the results of the
independent local analyses on the shared objects and application
executable. Similar modular combination techniques for compile
time analyses have been used by Das [10] and [23]. Our static anal-
ysis supports this model for shared objects by symbolically evaluat-
ing arguments that contain function pointers and thus allows bind-
ing and unification at runtime. Currently our runtime component
only performs a single level indirection of symbolic arguments to
obtain the full sets. While this scheme supports most use cases, it
easily breaks when a structure containing function pointers is suc-
cessively crossing module boundaries. Nevertheless, in practice
this crude binding technique was sufficient to handle all SPEC2000
benchmarks, with the exception of a transition in gcc which had
an incomplete set in the forementioned settings and was flagged as
alarming. This particular case would actually be handled by a field-
based analysis of structure assignments [27] even across module
boundaries.

The general problem of merging points-to sets, however, should
be solved by computing the transitive closure for all points-to sets
that cross module boundaries. In order to reduce program startup
overhead, the fully expanded sets should be precomputed together
with the executable, and will need to be recomputed only in the
rare case shared libraries are modified. The memory footprint
of straightforward representation of the final precomputed unique
sets, as observed on our benchmarks, is in one or two 4KB pages.
A self-contained security sensitive executable should be augmented
with an ELF [14] section memory mapped read-only which holds
the fully precomputed points-to sets for each indirect call. Our
prototype implementation, however, refrains from binary modifi-
cations.

Since our analysis is not in the program build process, we have
to match the call-site information we obtain from static source code
analysis to the actual indirect call instructions in the executable. We
have experimented so far only with binaries produced by the gcc
compiler, but any other compiler may be used to build the actual bi-
nary, as far as it generates accurate enough debugging information
at higher optimization levels. We have applied our postprocess on
program executables and shared libraries which were previously
built or locally installed. Most calls are sparsely located across
function and line boundaries and can therefore be unambiguously
matched. However, debugging information is insufficient to disam-
biguate between indirect calls on the same line. Since evaluations
between sequence points are compiler implementation dependent,
we occasionally have to merge sets for several indirect calls. If
this analysis is used in an infrastructure with more precise code
generation information, any artifactual inaccuracy of this external
matching will not be present.

It should be noted that for our purposes, a safe approximation on
a points-to set can even be a lower bound on the accurate points-to
set. In this respect is opposite to the traditional notion of conserva-
tive estimation. A points-to analysis that may miss some potential
valid transitions may produce false alarms (false positive) but will
not miss a violation of this model. Therefore an omission in the de-
duced model may cause denial of service to unusual requests with
legitimate intent, but it will never miss on a malicious request.

An easy way to obtain the target sets for a flow-insensitive,
context-insensitive validation in our program shepherding system
is to run it in in “learning” mode to only flag invalid indirect transi-
tions pairs, and then use the results of previous runs and allow only

benchmark total shared percent shared

ammp 321 4 1.2%
applu 372 2 0.5%
apsi 1153 14 1.2%
art 160 0 0.0%
equake 270 2 0.7%
mesa 400 0 0.0%
mgrid 389 0 0.0%
sixtrack 2707 86 3.2%
swim 393 2 0.5%
wupwise 548 4 0.7%
bzip2 197 0 0.0%
crafty 895 16 1.8%
eon 1866 63 3.4%
gap 1779 39 2.2%
gcc 7723 843 10.9%
gzip 199 0 0.0%
mcf 214 0 0.0%
parser 1061 10 0.9%
perlbmk 2696 106 3.9%
twolf 1012 12 1.2%
vortex 3371 135 4.0%
vpr 1014 12 1.2%

average 1880 116 2.6%

Table 2: Return address sharing for each reference data set run
of the SPEC2000 benchmarks, compiled with gcc -O3. The
first column gives the total number of unique return addresses
dynamically encountered. The second column lists the num-
ber of addresses that share their least significant 16 bits, while
the final column shows the percentage of total addresses that
share their bottom bits. For benchmarks with multiple runs,
the highest percentage run is shown.

those transitions. This method has its own merit, especially in the
absence of source code access. However, it is prone to a high num-
ber of false positives and for quick convergence requires profiling
runs with high code coverage.

5.4 Calling Convention Enforcement
We have implemented a call stack using the SIMD registers of

the Pentium 4. The Pentium 4 SSE and SSE2 extensions add eight
128-bit registers (the XMM registers) that can hold single-precision,
double-precision, or integral values. For a program that does not
make use of these registers, they can be stolen and used as a call
stack.

The SSE2 instruction set includes instructions for transferring a
16-bit value into or out of one of the eight 16-bit slots in each XMM
register. Unfortunately, storing a 32-bit value is much less efficient.
However, just the lower 16 bits of return addresses are sufficient to
distinguish over 97% of valid addresses, as shown in Table 2. For a
number of applications there are no return addresses that share their
least significant 16 bits. Using just the lower 16 bits, then, does not
sacrifice much security. It also allows twice as many return address
to be stored in our register stack.

We implemented a scheme where the XMM registers form a ro-
tating stack. The final 16-bit slot is used to store the call depth,
leaving room for 63 return address entries. On a call, the return
address is stored in the first slot and the rest of the slots are shifted
over. When the call depth exceeds 63, the oldest 32 values are
copied to memory which is then protected. On a return, the first
slot’s value is compared with the actual return address. Then the



Benchmark Indirect calls Functions Union Maximum
ammp 27 191 32 16
mesa 694 1073 440 440
gap 1275 865 614 268
gcc 137 2031 269 129
perlbmk 64 1042 448 433
vortex 18 935 41 37
glibc-2.2.4.so 687 2582 380 185
sendmail-8.12.6 100 685 116 84
openssh-3.5p1 133 738 100 41

Table 3: Static points-to analysis. The total number of func-
tions and indirect calls shown is as found in the executable or
shared object. The size of the set of functions present in the
union of all target sets, and the size of the maximum set of call
targets are obtained by our analysis.

slots are all shifted down. When the call depth reaches 0, the most
recent stored values are swapped back in to the first 32 register
slots. Only copying half of the stack avoids thrashing due to a
frequent series of small call depth changes. Expensive memory
protetion is only required on every call depth change of 32.

To handle setjmp() and longjmp(), the jmp buf should
be write-protected between the setjmp() and the corresponding
longjmp(), and the return address stack must be unwound to
the proper location. We have not implemented this yet, and our
system reports calling convention violations when it encounters
longjmp() (for example, in perlbmk in SPEC2000).

6. EXPERIMENTAL RESULTS
This section shows the effectiveness of our system and evaluates

its performance on the SPEC2000 benchmarks [37].

6.1 Effectiveness of static analysis
We applied our static points-to analysis and runtime implemen-

tation enforcement on indirect branches in the C SPEC2000 bench-
marks [37], two security sensitive applications that are usually run
with high privileges, the GNU C library, which is dynamically
linked to all applications, as well as other supporting libraries.

We summarize the results for the benchmarks with nonempty
sets in Table 3. The size of the maximum set of targets for an
indirect call is given, as a measure of the largest degree of freedom
for an execution deviation. The indirect calls in the executable or
the shared object are given for reference. The size of the union of all
indirect call targets is provided for comparison with a much simpler
technique that allows indirect calls to any address taken function,
which is possible with source code access. An even less restrictive
analysis that can be applied on unstripped binaries may allow all
function entry points in the executable and the shared libraries.

The interpreters in the benchmarks — gap and perl have high
maximum call set size due to dynamic method dispatch and that is
not surprising. Inspection of the maximum size sets of the other
benchmarks show that they contain functions with similar behav-
ior and their size reflects intrinsically equivalent operations for the
application, e.g. generic code generation in gcc, generic handling
of multiple ciphers in sshd. However, inaccuracies due to field-
independence result in larger sets than, for example the maximal
set of sshd would be three times smaller. In terms of freedom of
choice for an attacker, most of the sets usually provide similar facil-
ities, i.e. equivalent, if any, system calls. Therefore control over a
function pointer constrained to each of these sets will have limited
utility. We are currently automating this evaluation in order to fully

quantify the effective degree of freedom of a target set.

6.2 Performance
Figure 2 shows the performance of our system on a Linux system

with a Pentium 4 processor. The figure shows normalized execu-
tion time for the SPEC2000 benchmarks [37], compiled with full
optimization and run with unlimited code cache space. (Note that
we do not have a FORTRAN 90 compiler on Linux.) The first
bar gives the performance of DynamoRIO by itself. DynamoRIO
breaks even on many benchmarks, even though it is not performing
any optimizations beyond code layout in creating traces. The sec-
ond bar shows the performance of program shepherding employing
the context insensitive enforcement strategies on indirect control
transfers using a shared hash table, as discussed in Section 4.2.
The benchmarks marked with an asterisk were not in C and there-
fore were run with profiling information. The results show that the
additional overhead is negligible on most benchmarks.

The final bar gives the overhead of protecting DynamoRIO itself.
This overhead is again minimal, within the noise in our measure-
ments for most benchmarks. Only gcc has significant slowdown
due to page protection, because it consists of several short runs with
little code re-use. We are working on improving our page protec-
tion scheme by lazily unprotecting only those pages that are needed
on each return to DynamoRIO mode.

Figure 3 shows the performance of calling convention enforce-
ment using XMM registers, as discussed in Section 3.2.2. Its layout
is similar to Figure 2.

The memory usage of our program shepherding system has been
presented elsewhere [26].

7. RELATED WORK
Reflecting the significance and popularity of buffer overflow and

format string attacks, there have been several other efforts to pro-
vide automatic protection and detection of these vulnerabilities. We
summarize the more successful ones.

StackGuard [9] is a compiler patch that modifies function pro-
logues to place “canaries” adjacent to the return address pointer. A
stack buffer overflow will modify the “canary” while overwriting
the return pointer, and a check in the function epilogue can detect
that condition. This technique is successful only against sequential
overwrites and protects only the return address.

StackGhost [18] is an example of hardware-facilitated return ad-
dress pointer protection. It is a kernel modification of OpenBSD
that uses a Sparc architecture trap when a register window has to
be written to or read from the stack, so it performs transparent xor
operations on the return address before it is written to the stack on
function entry and before it is used for control transfer on function
exit. Return address corruption results in a transfer unintended by
the attacker, and thus attacks can be foiled.

Techniques for stack smashing protection by keeping copies of
the actual return addresses in an area inaccessible to the application
are also proposed in StackGhost [18] and in the compiler patch
StackShield [41]. Both proposals suffer from various complica-
tions in the presence of multi-threading or deviations from a strict
calling convention by setjmp() or exceptions. Unless the mem-
ory areas are unreadable by the application, there is no hard guar-
antee that an attack targeted against a given protection scheme can
be foiled. On the other hand, if the return stack copy is protected
for the duration of a function execution, it has to be unprotected
on each call, and that can be prohibitively expensive (mprotect
on Linux on IA-32 is 60–70 times more expensive than an empty
function call). Techniques for write-protection of stack pages [9]
have also shown significant performance penalties.
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Figure 2: Normalized program execution time for our system (the ratio of our execution time to native execution time) on the
SPEC2000 benchmarks (excluding all FORTRAN 90 benchmarks) on Pentium 4 under Linux. They were compiled using gcc -O3.
The final set of bars is the harmonic mean. The first bar is for DynamoRIO by itself; the middle bar shows the overhead of program
shepherding (employing context insensitive restrictions on indirect control transfers); and the final bar shows the overhead of the
page protection calls to prevent attacks against the system itself.

FormatGuard [8] is a library patch for dynamic checks of format
specifiers to detect format string vulnerabilities in programs which
directly use the standard printf functions.

Static analyses have also been applied for detection with rela-
tively low false positive rate of common buffer overflow [43] and
format string [36] vulnerabilities.

Enforcing non-executable permissions on IA-32 via OS kernel
patches has been done for stack pages [13] and for data pages in
PaX [32]. Our previous work [26] provides execution protection
from user mode on unmodified binaries and achieves better steady
state performance. Protection against attacks using existing code
was also proposed in PaX by randomizing placement of position
independent code; however, it is open to attacks that are able to
read process addresses and thus determine the program layout.

Type safety of C code has been proposed by the CCured sys-
tem [28] which extends the C type system, infers statically verifi-
able type safe pointers, and adds run time checks only for unsafe
pointers. Cyclone [24] provides a safe dialect of C in a similar
fashion, but requires annotations in conversion of legacy code. The
reported overhead of these systems is in the 30–300% range.

Other programming bugs stemming from violations of specific
higher level semantic rules of safe programming have been targeted
by static analyses like CQUAL [17], ESP [11], MC [20], and static
model checkers SLAM [40], MOPS [6]. In an unsafe language like
C, techniques that claim to be sound do not hold in the presence
of violations of the memory and execution model assumed in the
analyses [40]. Our system may be used to complement these and
enforce the execution model of the application.

Our system is close in spirit to the hybrid approach of using
static analysis and runtime model checking in [42]. A static anal-
ysis to construct a model of the system calls possibly generated by
a program and a runtime component to verify that. The system
call model is generated from an assumed valid execution model —
context-insensitive represented as call graph, or context-sensitive
with stack enforcement. Our system is as at least as accurate in
detection of disallowed system call sequences, since it disallows
deviations from the chosen execution model. Therefore our tech-
niques subsume the need to further model and dynamically check

system calls, and we present a practical system with minimal over-
head. The mimicry attacks introduced [42] and further analyzed by
Wagner [44] show how attackers can easily evade intrusion detec-
tion at the system call level. We have also outlined [26] a simple
mimicry attack violating information flow [21].

Software fault isolation [45] modifies a program binary to restrict
the address range of memory operations. Execution monitors [34]
were applied in SASI [15] to enforce a memory model via static
code instrumentation.

The Andersen’s [1] style points-to analysis that we’re employ-
ing in this work uses projection merging [39] and cycle elimina-
tion [16] implemented using the Banshee [3] analysis toolkit to
build a customized constraint resolution engine. The C front end
is derived from David Gay’s Region Compiler [19] and the GNU
C Compiler. Other points-to analyses for C have been presented in
[10, 23], and specifically applied to callgraph construction [22, 27].

Our system infrastructure itself, DynamoRIO [4, 5], is based on
an IA-32 port of Dynamo [2]. Other software dynamic optimizers
are Wiggins/Redstone [12], which employs program counter sam-
pling to form traces that are specialized for the particular Alpha
machine they are running on, and Mojo [7], which targets Win-
dows NT running on IA-32. None of the above has been used for
anything other than optimization. Strata [35] uses dynamic transla-
tion with lower performance to enforce a subset of the techniques
we have presented earlier [26].

8. CONCLUSIONS
In this paper, we have shown that by enforcing the program’s ex-

ecution model by restricting control transfers, we are able to thwart
current and future security attacks. We incorporate static program
analysis with dynamic analysis and program transformations to
provide with an efficient enforcement of the execution model.

We believe that program shepherding will be an integral part of
future security systems. It is relatively simple to implement, has
little or no performance penalty, and can coexist with existing op-
erating systems, applications, and hardware.
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