
Building
Customized Dynamic
Program Inspectors

Derek Bruening
Qin Zhao

Motivation

Profile, monitor, or inspect application binaries as they run

• Build customized dynamic program inspectors

Target production workloads

• Profile or inspect actual deployed application with no overhead when
not in inspection mode

Target applications that include legacy components, third-
party libraries, or dynamically-generated code

• Want to inspect whole program even if cannot recompile it all

2

Reach of Toolchain Control Points

3

runtime inspector

Dynamo
@HP Labs

on x86

DynamoRIO

Dynamo + RIO �
DynamoRIO

1999

Dynamo
@HP Labs
on PA-RISC

RIO @MIT
(Runtime Introspection

and Optimization)

2001

late 1990’s 2000

4

Google
sponsors

Dr. Memory

DynamoRIO History

2001

VMware
acquires

Determina

Determina
security startup

open-sourced
BSD license

binary releases

DynamoRIO
@MIT

2003 2007 2010

2002 2009

5

DynamoRIO Tool Platform Design Goals

Efficient

• Near-native performance

Transparent

• Match native behavior

Comprehensive

• Control every instruction, in any application

Customizable

• Adapt to satisfy disparate tool needs

6

Outline

Base System: DynamoRIO

• Efficient

• Transparent

• Comprehensive

• Customizable

Dynamic Program Inspectors

• Examples and Possibilities

• Case studies

7

Basic Interpreter

interpreter

fetch decode execute

~300x Slowdown!

application code

bar()foo()

A

B C

D

E

F

8

application code

bar()foo()

Improvement #1: Basic Block Cache

A

B C

D

E

F

DynamoRIO

basic
block
cache

A

C

D

E

F

Slowdown: 300x 25x

9

application code

bar()foo()

Improvement #2: Linking Direct Branches

A

B C

D

E

F

DynamoRIO

basic
block
cache

A

C

D

E

F

Slowdown: 300x 25x 3x

10

application code

bar()foo()

Improvement #3: Linking Indirect Branches

A

B C

D

E

F

DynamoRIO

basic
block
cache

A

C

D

E

F

Slowdown: 300x 25x 3x 1.2x

indirect
branch
lookup

11

application code

bar()foo()

Improvement #4: Trace Building

A

B C

D

E

F

DynamoRIO

basic
block
cache

A

C

D

E

F

trace
cache

A

C

D

E

F

?

Slowdown: 300x 25x 3x 1.2x 1.1x

indirect
branch
lookup

ind. br.
stays

on
trace?

12

Base Performance: SPEC 2006

13

application code

bar()foo()

Time Breakdown for SPEC CPU INT

A

B C

D

E

F

DynamoRIO

basic
block
cache

A

C

D

E

F

trace
cache

A

C

D

E

F

?
indirect
branch
lookup

ind. br.
stays

on
trace?

0%

2%

94%
4%

< 1%

14

Outline

Base System: DynamoRIO

• Efficient

• Transparent

• Comprehensive

• Customizable

Dynamic Program Inspectors

• Examples and Possibilities

• Case studies

15

Unavoidably Intrusive

16

processprocess

app cache

process process
DynamoRIO

th
re

a
d

th
re

a
d

th
re

a
d

operating system

A

C

D

E

F

look
up

A

B C

D

E

F

th
re

a
d

th
re

a
d

th
re

a
d

Outline

Base System: DynamoRIO

• Efficient

• Transparent

• Comprehensive

• Customizable

Dynamic Program Inspectors

• Examples and Possibilities

• Case studies

17

processprocess

app cache

Above the Operating System

process process
DynamoRIO

th
re

a
d

th
re

a
d

th
re

a
d

18

A

C

D

E

F

look
up

A

B C

D

E

F

th
re

a
d

th
re

a
d

th
re

a
d

E E

operating system

Outline

Base System: DynamoRIO

• Efficient

• Transparent

• Comprehensive

• Customizable

Dynamic Program Inspectors

• Examples and Possibilities

• Case studies

19

basic
block
cache

application code

bar()foo()

DynamoRIO + Client Program Inspector

A

B C

D

E

F

DynamoRIO
C

D

E

F

trace
cache

C

E

F

?
indirect
branch
lookup

A

A

client code

20

D

D

Primary Client Events: Code Stream

Client has opportunity to inspect and potentially modify
every single application instruction, immediately before it
executes

Entire application code stream

• Basic block creation event: can modify the block

• For comprehensive instrumentation tools

Or, focus on hot code only

• Trace creation event: can modify the trace

• Custom trace creation: can determine trace end condition

• For optimization and profiling tools

21

application code

bar()foo()

Transformation Time vs Execution Time

A

B C

D

E

F

DynamoRIO

basic
block
cache

C

D

E

F

trace
cache

C

D

E

F

?
indirect
branch
lookup

A

A

client code

transformation
time

22

execution time

average
instruction

length

call
instruction
execution

count

Code Cache Threading Models

thread

thread

thread

thread

thread

thread

thread

thread

thread

thread

thread

thread

application

thread-shared code cache

operating system

thread-private code caches

23

Secondary Client Events

Application thread creation and deletion

Application library load and unload

Application exception/signal

• Client chooses whether to deliver, suppress, bypass the app handler,
or redirect control

Application pre- and post- system call

• Client can inspect/modify call number, params, or return value

Bookkeeping: init, exit, cache management, etc.

24

DynamoRIO API: General Utilities

Safe utilities for maintaining transparency

• Separate stack, memory allocation, file I/O

• Thread-local storage, synchronization

• Create client-only thread or private itimer

Application control

• Suspend and resume all other threads

Application inspection

• Address space querying

• Module iterator

• Processor feature identification

25

DynamoRIO API: Code Manipulation

Clean calls to C or C++ code

• Automatically inlined for simple callees

Full IA-32/AMD64 instruction representation

• Includes implicit operands, decoding, encoding

State preservation

• Eflags, arith flags, floating-point state, MMX/SSE state

• Spill slots, TLS, CLS

Dynamic instrumentation

• Replace code in the code cache

26

DynamoRIO
Demo

Powerpoint Under Inspector

28

Outline

Base System: DynamoRIO

• Efficient

• Transparent

• Comprehensive

• Customizable

Dynamic Program Inspectors

• Examples and Possibilities

• Case studies

� Program shepherding

� Dr. Memory

29

Examples and Possibilities

Code Inspection

• Code coverage

• Path profiling

Data Inspection

• Heap overflow detection

Concurrency Inspection

• Cache contention detection

30

application code

bar()foo()

Code Inspection: Code Coverage (bbcov)

A

B C

D

E

F

DynamoRIO

basic
block
cache

E

F

trace
cache

A

client code

31

A

A

C

C

D

C

A C D E F

A C D E F

• Efficient code coverage

C

D

E

F

A

transformation
time

D

D

E

E

F

F

• Hot/cold code discovery

• Cold start optimization

Code Inspection: Code Coverage (bbcov)

void dr_init(client_id_t id)
{ …

dr_register_bb_event(event_basic_block);
…
if (dr_using_all_private_caches())

bbcov_per_thread = true;
}

dr_emit_flags_t event_basic_block(void *dc, void *tag, instrlist_t *bb, bool trace, bool xl8)
{

…
for (instr = instrlist_first(bb); instr != NULL; instr = instr_get_next(instr)) { … }
…
bb_table_entry_add(dc, data, start_pc, cbr_tgt, (end_pc - start_pc), num_instrs, trace);
return DR_EMIT_DEFAULT;

}

32

application code

bar()foo()

Code Inspection: Path Profiling (bbbuf)

A

B C

D

E

F

DynamoRIO

basic
block
cache

trace
cacheclient code

33

A

C

A C D

E

A C D

A C D

E

A

C

A

D

C

D

DE

E

execution
time

Code Inspection: Path Profiling (bbbuf)

void dr_init(client_id_t id)
{ …

dr_register_bb_event(event_basic_block);
if (!dr_raw_tls_calloc(&tls_seg, &tls_offs, 1, 0))

DR_ASSERT(false);
}

dr_emit_flags_t event_basic_block(void *dc, void *tag, instrlist_t *bb, bool trace, bool xl8)
{ …

/* load buffer pointer from TLS field */
MINS(bb, first, INSTR_CREATE_mov_ld

(dc, opnd_create_reg(reg),
opnd_create_far_base_disp(tls_seg, DR_REG_NULL, DR_REG_NULL,

0, tls_offs, OPSZ_PTR)));
/* store bb's start pc into the buffer */
MINS (bb, first, INSTR_CREATE_mov_st

(dc, OPND_CREATE_MEM32(reg, 0), OPND_CREATE_INT32(pc)));
/* advance buffer, we use lea to avoid aflags save/restore */
MINS(bb, first, INSTR_CREATE_lea

(dc, opnd_create_reg(reg_16),
opnd_create_base_disp(reg, DR_REG_NULL, 0,

sizeof(app_pc), OPSZ_lea)));
/* save buffer pointer */
MINS(bb, first, INSTR_CREATE_mov_st

(dc, opnd_create_far_base_disp(tls_seg, DR_REG_NULL, DR_REG_NULL,
0, tls_offs, OPSZ_PTR),

opnd_create_reg(reg)));
return DR_EMIT_DEFAULT;

}

34

start_pc = 0xf771bb9b
mov (%esp) � %ebx
ret %esp (%esp) � %esp

end_pc = 0xf771bb9f

mov $0xf771bb9b � (%ebx)

lea 0x04(%ebx) � %bx

mov %ebx � %fs:0x4c

mov (%esp) � %ebx
ret %esp (%esp) � %esp

mov %fs:0x4c � %ebx

Code Inspection

Profiling

• Instruction/edge/path/inter-procedural profiling

• Hot/cold code

• Control-flow/call graph

Debugging

• Execution recording

• Software breakpoint

Security

• Program shepherding

• Code de-obfuscation

35

Examples and Possibilities

Code Inspection

• Code coverage

• Path profiling

Data Inspection

• Heap overflow detection

Concurrency Inspection

• Cache contention detection

36

Data Inspection: Heap Overflow Detection

Catch heap underflow and overflow:

• Wrap allocation routines

• Keep track of malloc chunks.

• Insert redzones between application malloc chunks
and put special value (pattern) like 0xf1fd in the redzone.

• Instrumentation

• Check value before every memory access: look for 0xf1fd.

• If found, check whether address is in redzone.

37

malloc
header

requested size for
application data

malloc
padding

pre-
redzone

post-
redzone

Instrumentation

void pattern_insert_cmp_jne_ud2a(void *dc, instrlist_t *ilist, instr_t *app, opnd_t ref, opnd_t pattern)
{

instr_t *label;
app_pc pc = instr_get_app_pc(app);
label = INSTR_CREATE_label(drcontext);
/* cmp ref, pattern */
PREXL8M(ilist, app, INSTR_XL8

(INSTR_CREATE_cmp(dc, ref, pattern), pc));
/* jne label */
PRE(ilist, app, INSTR_CREATE_jcc_short

(dc, OP_jne_short, opnd_create_instr(label)));
/* illegal instr */
PREXL8M(ilist, app, INSTR_XL8(INSTR_CREATE_ud2a(dc), pc));
/* label */
PRE(ilist, app, label);

}

void dr_init(client_id_t id)
{ …
#ifdef LINUX

dr_register_signal_event(event_signal);
#else

dr_register_exception_event(event_exception);
#endif
}

38

mov 0x00000084(%eax) � %edx
test %edx %edx
jz $0xf77e6ea2

cmp 0x00000084(%eax) $0xf1fdf1fd

jnz <label>

ud2a

<label>mov 0x1c(%esp) � %eax

Data Inspection

Profiling

• Memory tracing

� Cache simulation, data layout/prefetch optimization, etc.

• System call tracing

• Heap state inspection

Debugging

• Memory bug detection

� Uninit error, buffer overflow/underflow, memory leak, etc.

• Software watchpoint

Security

• Dynamic data-flow tracking (taint-trace)

39

Examples and Possibilities

Code Inspection

• Code coverage

• Path profiling

Data Inspection

• Heap overflow detection

Concurrency Inspection

• Cache contention detection

40

Concurrency Inspection: Cache Contention

41

P
$

P
$

$

P
$

P
$

$

Motivating example:

uint64 local_sum[2];
uint64 global_sum;

parallel_sum(int myid, int start, int end) {
for (int i = start; i < end; i++)

local_sum[myid] += buf[i];
lock();
global_sum += local_sum[myid];
unlock();

}

Threads 1 2

same core distinct cores

min max

Time(s): no padding 4.798 4.842 3.883 5.219

Time(s): padding 4.780 4.817 2.451 2.473

Network

memory I/O
local_sum[2]

Xeon X5460 @ 3.16GHz, 2x Quad core

Hardware Performance Counter

Hardware limitation

• Limited events: must deduce from supported counter

Hardware specific

• Cache configuration, particular cache line size, cache size, etc.

• Thread-CPU binding

Flexibility

• Limited to sampling

• Hard to reconfigure

42

Software Shadow Memory

Store meta-data

• Track properties of application memory

Update via instrumented code

43

a.out

stack

libc

application memory

heap

a.out

stack

libc

shadow memory

heap

process address space

ownership bitmap (32 bits)

shadow memory

T
1

T
3

2

T
2

Cache Contention Detection

Cacheline mapped to thread ownership bitmap

Memory reference:

• Test and set thread bit (cache miss)

Memory write:

• Compare and set only own bit (cache invalidation)

application memory

cache lines (16 words each)

44

Concurrency Inspection

Profiling

• Cache contention

• False sharing

• Multi-thread communication

Debugging

• Data race detection

• Deterministic record and replay

Security

• Deterministic scheduling

45

Other Possible Applications

Performance

• Cross-architectural performance estimation

Debugging

• Integration with debugger with reverse execution

Security

• Sandboxing

Others

• Dynamic translation

46

Outline

Base System: DynamoRIO

• Efficient

• Transparent

• Comprehensive

• Customizable

Dynamic Program Inspectors

• Examples and Possibilities

• Case studies

� Program shepherding

� Dr. Memory

47

Anatomy of a Memory-Based Attack

system and
application

memory

kernel

network

ENTER

CORRUPT DATA

HIJACK PROGRAM COUNTER

COMPROMISE

48

Critical Data: Control Flow Indirection

Subroutine calls

• Return address and activation records on visible stack

Dynamic library linking

• Function exports and imports

Object oriented polymorphism: dynamic dispatch

• Vtables

Callbacks – registered function pointers

• Event dispatch, atexit

Exception handling

Any problem in computer science can be solved with another layer

of indirection.

- David Wheeler

49

Critical Data: Control Flow Exploits

Return address overwrite

• Classic buffer overflow

GOT overwrite

Object pointer overwrite or uninitialized use

Function pointer overwrite

• Heap, stack, data, PEB

Exception handler overwrites

• SEH exploits

Any problem in computer science can be solved with another layer

of indirection. But that usually will create another problem.

- David Wheeler

50

Preventing Data Corruption Is Difficult

Stored program addresses legitimately manipulated by
many different entities

• Dynamic linker, language runtime

Intermingled with regular data

• Return addresses on stack

• Vtables in heap

Even if could distinguish a good write from a bad write, too
expensive to monitor all data writes

51

Insight: Hijack Violates Execution Model

Hardware
Interface

Typical
Application

Execution Model
Security Attack

52

Goal: Shrink Hardware Interface

Typical
Application

Execution Model
Security Attack

Constrained
Hardware Interface

53

Program Shepherding

Monitor all control-flow transfers during program execution

• DynamoRIO is in perfect position to do this

Validate that each transfer satisfies security policy based
on execution model

• Application Binary Interface (ABI): calling convention, library
invocation

The application may be damaged by data corruption, but
the system will not be compromised by hijacking control
flow

54

program
shepherding

application code

unmodified

code

modified

code

Technique 1: Restricted Code Origins

E

D

basic
block
cache

A

C

D

trace
cache

indirect
branch
lookup

instrumen-
tation time

55

program
shepherding

application code

Technique 2: Restricted Control Transfers

basic
block
cache

A

C

D

trace
cache

indirect
branch
lookup

E

F

D

E

F

?

bar()foo()

A

B C

D

E

F

call

A

C

instrumen-
tation time

56

return

jump

application code

bar()foo()

basic block cache

Technique 3: Un-circumventable Sandboxing

A
B

pre-check
system call
post-check

C
jump

A
B

system call
C

jump

pre-check
system call
post-check

C

57

Minimal False Positives

Carefully crafted security policies

Automated exemption generation: ‘staging mode’

Determina, Inc: 50 customers, 10,000 machines

• No false positives in MSFT apps

• <50 unique false positives in 3rd party libraries

We treated these false positives as bugs rather than
customer driven policies

• Radically different from other security products

58

Outline

Base System: DynamoRIO

• Efficient

• Transparent

• Comprehensive

• Customizable

Dynamic Program Inspectors

• Examples and Possibilities

• Case studies

� Program shepherding

� Dr. Memory

59

Memory Bugs

Memory bugs are challenging to detect and fix

• Memory corruption, reading uninitialized memory, memory leaks

Observable symptoms resulting from memory bugs are
often delayed and non-deterministic

• Errors are difficult to discover during regular testing

• Testing usually relies on randomly happening to hit visible symptoms

• The sources of these bugs are painful and time-consuming to track
down from observed crashes

Memory bugs often remain in shipped products and can
show up in customer usage

60

Dr. Memory

Detects unaddressable memory

accesses

• Wild access to invalid address

• Use-after-free

• Buffer and array overflow and underflow

• Read beyond top of stack

• Invalid free, double free

Detects uninitialized memory reads

Detects memory leaks

61

Implementation Strategy

Track the state of application memory using shadow

memory

• Track whether allocated and whether defined

Monitor every memory-related action by the application:

• System call

• Malloc, realloc, calloc, free, mmap, mumap, mremap

• Memory read or write

• Stack adjustment

At exit or on request, scan memory to check for leaks

62

Shadow each byte of memory + registers with 1 of 3 states:

Shadow Metadata

definedunaddressable uninitialized

allocate:
malloc, stack

deallocate

write

deallocate

allocate: mmap, calloc

63

Shadow Memory

defined

unaddr

uninit

defined

Shadow Stack
Stack

Shadow HeapHeap

header

malloc

header

padding

unaddr

unaddr

unaddr

defined

uninit

defined

freed

unaddr

64

redzone

redzone unaddr

unaddr

The Uninitialized Whole Word Problem

Sub-word variables are moved around as whole words

• Sub-word field often initialized as sub-word yet copied as whole word

• Reads involved in copying should not raise errors

Solution: report errors on “meaningful” reads only

• Use in compare, conditional branch, address register, or system call

Requires propagating metadata and shadowing registers

• Shadow metadata mirrors application data flow

byte 3

byte 0

byte 1

byte 2

init

uninit

uninit

init

In
it

ia
li

z
e
 1

6
 b

it
s

init

uninit

uninit

init

C
o

p
y
 3

2
 b

it
s

init

uninit

uninit

init

C
o

m
p

a
re

 1
6
 b

it
s

65

Memory Leaks

Dr. Memory uses reachability-based leak detection

• A leak is memory that is no longer reachable by the application

• Memory that is never freed is not considered a leak

� Acceptable to not free memory whose lifetime matches process lifetime

At exit time, or on request, perform leak analysis

• Similar to mark-and-sweep garbage collection

Dr. Memory divides all allocated memory into categories
based on how it can be reached by live application pointers

• Any pointer-aligned and initialized pointer-sized word is considered a
potential pointer

66

Heap Usage and Staleness

Memory usage statistics

• Snapshots of memory usage spaced uniformly across execution

• Drill down by allocation callstack

“Staleness” information

• Record the time at which each allocation was last accessed

• Helps identify "logical memory leaks", where memory is still
reachable but is no longer needed

• Also identifies “hotness” of heap objects

Approach

• Shadow memory state is touched or not touched

• Periodically sample shadow state and update timestamps

67

Fastpath and Slowpath

Fastpath = carefully hand-crafted machine-code kernels

• Obtain shadow metadata, combine, and propagate: inlined

• Handle stack pointer updates: lean procedure

Slowpath = clean call to C code

• Unaligned memory references

• Complex instructions

• Allocation library routine and system call handling

• Error reporting

68

Performance Comparison

V
a

lg
ri

n
d

fa
il
e

d

V
a

lg
ri

n
d

fa
il
e

d

69

Outline

Base System: DynamoRIO

• Efficient

• Transparent

• Comprehensive

• Customizable

Dynamic Program Inspectors

• Examples and Possibilities

• Case studies

Wrap-up

70

More Information

Web

• http://dynamorio.org

• http://drmemory.org

Email

• http://groups.google.com/group/dynamorio-users

• http://groups.google.com/group/drmemory-users

71

