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Motivation

Profile, monitor, or inspect application binaries as they run

• Build customized dynamic program inspectors

Target production workloads

• Profile or inspect actual deployed application with no overhead when 
not in inspection mode

Target applications that include legacy components, third-
party libraries, or dynamically-generated code

• Want to inspect whole program even if cannot recompile it all
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Reach of Toolchain Control Points
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DynamoRIO Tool Platform Design Goals

Efficient

• Near-native performance

Transparent

• Match native behavior

Comprehensive

• Control every instruction, in any application

Customizable

• Adapt to satisfy disparate tool needs
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Basic Interpreter

interpreter
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application code
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application code
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Improvement #2: Linking Direct Branches
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application code
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Improvement #3: Linking Indirect Branches
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application code

bar()foo()

Improvement #4: Trace Building
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Base Performance: SPEC 2006
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application code

bar()foo()

Time Breakdown for SPEC CPU INT
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Unavoidably Intrusive
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processprocess

app cache
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Primary Client Events: Code Stream

Client has opportunity to inspect and potentially modify 
every single application instruction, immediately before it 
executes

Entire application code stream

• Basic block creation event: can modify the block

• For comprehensive instrumentation tools

Or, focus on hot code only

• Trace creation event: can modify the trace

• Custom trace creation: can determine trace end condition

• For optimization and profiling tools
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application code

bar()foo()
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Code Cache Threading Models

thread

thread

thread

thread

thread

thread

thread

thread

thread

thread
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application
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operating system
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Secondary Client Events

Application thread creation and deletion

Application library load and unload

Application exception/signal

• Client chooses whether to deliver, suppress, bypass the app handler, 
or redirect control

Application pre- and post- system call

• Client can inspect/modify call number, params, or return value

Bookkeeping: init, exit, cache management, etc.
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DynamoRIO API: General Utilities

Safe utilities for maintaining transparency

• Separate stack, memory allocation, file I/O

• Thread-local storage, synchronization

• Create client-only thread or private itimer

Application control

• Suspend and resume all other threads

Application inspection

• Address space querying

• Module iterator

• Processor feature identification
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DynamoRIO API: Code Manipulation

Clean calls to C or C++ code

• Automatically inlined for simple callees

Full IA-32/AMD64 instruction representation

• Includes implicit operands, decoding, encoding

State preservation

• Eflags, arith flags, floating-point state, MMX/SSE state

• Spill slots, TLS, CLS

Dynamic instrumentation

• Replace code in the code cache
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Powerpoint Under Inspector
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Examples and Possibilities

Code Inspection

• Code coverage

• Path profiling

Data Inspection

• Heap overflow detection

Concurrency Inspection

• Cache contention detection
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application code

bar()foo()

Code Inspection: Code Coverage (bbcov)
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Code Inspection: Code Coverage (bbcov)

void dr_init(client_id_t id) 
{  …

dr_register_bb_event(event_basic_block);
…
if (dr_using_all_private_caches())

bbcov_per_thread = true;
}

dr_emit_flags_t event_basic_block(void *dc, void *tag, instrlist_t *bb, bool trace, bool xl8) 
{

…
for (instr = instrlist_first(bb); instr != NULL; instr = instr_get_next(instr)) { … }
…
bb_table_entry_add(dc, data, start_pc, cbr_tgt, (end_pc - start_pc), num_instrs, trace);
return DR_EMIT_DEFAULT;

}
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application code

bar()foo()

Code Inspection: Path Profiling (bbbuf)
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Code Inspection: Path Profiling (bbbuf)

void dr_init(client_id_t id) 
{  …

dr_register_bb_event(event_basic_block);
if (!dr_raw_tls_calloc(&tls_seg, &tls_offs, 1, 0))

DR_ASSERT(false);
}

dr_emit_flags_t event_basic_block(void *dc, void *tag, instrlist_t *bb, bool trace, bool xl8) 
{  …

/* load buffer pointer from TLS field */
MINS(bb, first, INSTR_CREATE_mov_ld

(dc, opnd_create_reg(reg),
opnd_create_far_base_disp(tls_seg, DR_REG_NULL, DR_REG_NULL,

0, tls_offs, OPSZ_PTR)));
/* store bb's start pc into the buffer */
MINS (bb, first, INSTR_CREATE_mov_st

(dc, OPND_CREATE_MEM32(reg, 0), OPND_CREATE_INT32(pc))); 
/* advance buffer, we use lea to avoid aflags save/restore */
MINS(bb, first, INSTR_CREATE_lea

(dc, opnd_create_reg(reg_16),
opnd_create_base_disp(reg, DR_REG_NULL, 0,  

sizeof(app_pc), OPSZ_lea)));
/* save buffer pointer */
MINS(bb, first, INSTR_CREATE_mov_st

(dc, opnd_create_far_base_disp(tls_seg, DR_REG_NULL, DR_REG_NULL,
0, tls_offs, OPSZ_PTR), 

opnd_create_reg(reg))); 
return DR_EMIT_DEFAULT; 

}
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start_pc = 0xf771bb9b
mov (%esp) � %ebx
ret       %esp (%esp) � %esp

end_pc = 0xf771bb9f

mov $0xf771bb9b � (%ebx)

lea      0x04(%ebx) � %bx

mov    %ebx � %fs:0x4c

mov (%esp) � %ebx
ret       %esp (%esp) � %esp

mov %fs:0x4c � %ebx



Code Inspection

Profiling

• Instruction/edge/path/inter-procedural profiling

• Hot/cold code

• Control-flow/call graph

Debugging

• Execution recording

• Software breakpoint

Security

• Program shepherding

• Code de-obfuscation
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Examples and Possibilities

Code Inspection

• Code coverage

• Path profiling

Data Inspection

• Heap overflow detection

Concurrency Inspection

• Cache contention detection
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Data Inspection: Heap Overflow Detection

Catch heap underflow and overflow:

• Wrap allocation routines

• Keep track of malloc chunks.

• Insert redzones between application malloc chunks
and put special value (pattern) like 0xf1fd in the redzone.

• Instrumentation

• Check value before every memory access: look for 0xf1fd.

• If found, check whether address is in redzone.
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Instrumentation

void pattern_insert_cmp_jne_ud2a(void *dc, instrlist_t *ilist, instr_t *app, opnd_t ref, opnd_t pattern)
{

instr_t *label;
app_pc pc = instr_get_app_pc(app);
label = INSTR_CREATE_label(drcontext);
/* cmp ref, pattern */
PREXL8M(ilist, app, INSTR_XL8

(INSTR_CREATE_cmp(dc, ref, pattern), pc));
/* jne label */
PRE(ilist, app, INSTR_CREATE_jcc_short

(dc, OP_jne_short, opnd_create_instr(label)));
/* illegal instr */
PREXL8M(ilist, app, INSTR_XL8(INSTR_CREATE_ud2a(dc), pc));
/* label */
PRE(ilist, app, label);

}

void dr_init(client_id_t id) 
{   …
#ifdef LINUX

dr_register_signal_event(event_signal);
#else

dr_register_exception_event(event_exception);
#endif
}
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mov 0x00000084(%eax) � %edx
test     %edx %edx
jz $0xf77e6ea2

cmp 0x00000084(%eax)  $0xf1fdf1fd

jnz <label>

ud2a

<label>mov 0x1c(%esp) � %eax



Data Inspection

Profiling

• Memory tracing

� Cache simulation, data layout/prefetch optimization, etc.

• System call tracing

• Heap state inspection

Debugging

• Memory bug detection

� Uninit error, buffer overflow/underflow, memory leak, etc.

• Software watchpoint

Security

• Dynamic data-flow tracking (taint-trace)
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Examples and Possibilities

Code Inspection

• Code coverage

• Path profiling

Data Inspection

• Heap overflow detection

Concurrency Inspection

• Cache contention detection
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Concurrency Inspection: Cache Contention

41
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Motivating example:

uint64 local_sum[2];
uint64 global_sum;

parallel_sum(int myid, int start, int end) {
for (int i = start; i < end; i++)

local_sum[myid] += buf[i];
lock();
global_sum += local_sum[myid];
unlock();

}

# Threads 1 2

same core distinct cores

min max

Time(s): no padding 4.798 4.842 3.883 5.219

Time(s): padding 4.780 4.817 2.451 2.473

Network

memory I/O
local_sum[2]

Xeon X5460 @ 3.16GHz,  2x Quad core



Hardware Performance Counter

Hardware limitation

• Limited events: must deduce from supported counter

Hardware specific

• Cache configuration, particular cache line size, cache size, etc.

• Thread-CPU binding

Flexibility

• Limited to sampling

• Hard to reconfigure
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Software Shadow Memory

Store meta-data

• Track properties of application memory

Update via instrumented code
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ownership bitmap (32 bits)

shadow memory

T
1

T
3

2

T
2

Cache Contention Detection

Cacheline mapped to thread ownership bitmap

Memory reference: 

• Test and set thread bit (cache miss)

Memory write: 

• Compare and set only own bit (cache invalidation)

application memory

cache lines (16 words each)
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Concurrency Inspection

Profiling

• Cache contention

• False sharing

• Multi-thread communication

Debugging

• Data race detection

• Deterministic record and replay

Security

• Deterministic scheduling
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Other Possible Applications

Performance

• Cross-architectural performance estimation

Debugging

• Integration with debugger with reverse execution

Security

• Sandboxing

Others

• Dynamic translation

46



Outline

Base System: DynamoRIO

• Efficient

• Transparent

• Comprehensive

• Customizable

Dynamic Program Inspectors

• Examples and Possibilities

• Case studies

� Program shepherding

� Dr. Memory

47



Anatomy of a Memory-Based Attack

system and 
application 

memory

kernel

network

ENTER

CORRUPT DATA

HIJACK PROGRAM COUNTER

COMPROMISE
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Critical Data: Control Flow Indirection

Subroutine calls

• Return address and activation records on visible stack

Dynamic library linking

• Function exports and imports

Object oriented polymorphism: dynamic dispatch

• Vtables

Callbacks – registered function pointers

• Event dispatch, atexit

Exception handling

Any problem in computer science can be solved with another layer 

of indirection.

- David Wheeler
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Critical Data: Control Flow Exploits

Return address overwrite

• Classic buffer overflow

GOT overwrite

Object pointer overwrite or uninitialized use

Function pointer overwrite

• Heap, stack, data, PEB

Exception handler overwrites

• SEH exploits

Any problem in computer science can be solved with another layer 

of indirection. But that usually will create another problem.

- David Wheeler
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Preventing Data Corruption Is Difficult

Stored program addresses legitimately manipulated by 
many different entities

• Dynamic linker, language runtime

Intermingled with regular data

• Return addresses on stack

• Vtables in heap

Even if could distinguish a good write from a bad write, too 
expensive to monitor all data writes
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Insight: Hijack Violates Execution Model

Hardware
Interface

Typical 
Application 

Execution Model
Security Attack
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Goal: Shrink Hardware Interface

Typical 
Application 

Execution Model
Security Attack

Constrained 
Hardware Interface
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Program Shepherding

Monitor all control-flow transfers during program execution

• DynamoRIO is in perfect position to do this

Validate that each transfer satisfies security policy based 
on execution model

• Application Binary Interface (ABI): calling convention, library 
invocation

The application may be damaged by data corruption, but 
the system will not be compromised by hijacking control 
flow
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application code

bar()foo()

basic block cache

Technique 3: Un-circumventable Sandboxing

A
B

pre-check
system call
post-check

C
jump

A
B

system call
C

jump

pre-check
system call
post-check

C

57



Minimal False Positives

Carefully crafted security policies

Automated exemption generation: ‘staging mode’

Determina, Inc: 50 customers, 10,000 machines

• No false positives in MSFT apps

• <50 unique false positives in 3rd party libraries

We treated these false positives as bugs rather than 
customer driven policies

• Radically different from other security products

58



Outline

Base System: DynamoRIO

• Efficient

• Transparent

• Comprehensive

• Customizable

Dynamic Program Inspectors

• Examples and Possibilities

• Case studies

� Program shepherding

� Dr. Memory

59



Memory Bugs

Memory bugs are challenging to detect and fix

• Memory corruption, reading uninitialized memory, memory leaks

Observable symptoms resulting from memory bugs are 
often delayed and non-deterministic

• Errors are difficult to discover during regular testing

• Testing usually relies on randomly happening to hit visible symptoms

• The sources of these bugs are painful and time-consuming to track 
down from observed crashes

Memory bugs often remain in shipped products and can 
show up in customer usage
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Dr. Memory

Detects unaddressable memory 

accesses

• Wild access to invalid address

• Use-after-free

• Buffer and array overflow and underflow

• Read beyond top of stack

• Invalid free, double free

Detects uninitialized memory reads

Detects memory leaks
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Implementation Strategy

Track the state of application memory using shadow 

memory

• Track whether allocated and whether defined

Monitor every memory-related action by the application:

• System call

• Malloc, realloc, calloc, free, mmap, mumap, mremap

• Memory read or write

• Stack adjustment

At exit or on request, scan memory to check for leaks
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Shadow each byte of memory + registers with 1 of 3 states:

Shadow Metadata

definedunaddressable uninitialized

allocate:
malloc, stack

deallocate

write

deallocate

allocate: mmap, calloc
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Shadow Memory

defined

unaddr

uninit

defined

Shadow Stack
Stack

Shadow HeapHeap

header

malloc

header

padding

unaddr

unaddr

unaddr

defined

uninit

defined

freed

unaddr
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The Uninitialized Whole Word Problem

Sub-word variables are moved around as whole words

• Sub-word field often initialized as sub-word yet copied as whole word

• Reads involved in copying should not raise errors

Solution: report errors on “meaningful” reads only

• Use in compare, conditional branch, address register, or system call

Requires propagating metadata and shadowing registers

• Shadow metadata mirrors application data flow
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Memory Leaks

Dr. Memory uses reachability-based leak detection

• A leak is memory that is no longer reachable by the application

• Memory that is never freed is not considered a leak

� Acceptable to not free memory whose lifetime matches process lifetime

At exit time, or on request, perform leak analysis

• Similar to mark-and-sweep garbage collection

Dr. Memory divides all allocated memory into categories 
based on how it can be reached by live application pointers

• Any pointer-aligned and initialized pointer-sized word is considered a 
potential pointer
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Heap Usage and Staleness

Memory usage statistics

• Snapshots of memory usage spaced uniformly across execution

• Drill down by allocation callstack

“Staleness” information

• Record the time at which each allocation was last accessed

• Helps identify "logical memory leaks", where memory is still 
reachable but is no longer needed

• Also identifies “hotness” of heap objects

Approach

• Shadow memory state is touched or not touched

• Periodically sample shadow state and update timestamps
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Fastpath and Slowpath

Fastpath = carefully hand-crafted machine-code kernels

• Obtain shadow metadata, combine, and propagate: inlined

• Handle stack pointer updates: lean procedure

Slowpath = clean call to C code

• Unaligned memory references

• Complex instructions

• Allocation library routine and system call handling

• Error reporting
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Performance Comparison
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More Information

Web

• http://dynamorio.org

• http://drmemory.org

Email

• http://groups.google.com/group/dynamorio-users

• http://groups.google.com/group/drmemory-users
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