
Dynamic Native Optimization of Interpreters

Gregory T. Sullivan
gregs@ai.mit.edu
Artifical Intelligence

Lab

Derek L. Bruening
iye@lcs.mit.edu

Laboratory for
Computer Science

Iris Baron
iris@lcs.mit.edu

Laboratory for
Computer Science

Timothy Garnett
timothyg@lcs.mit.edu

Laboratory for Computer Science

Saman Amarasinghe
saman@lcs.mit.edu

Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA

Abstract

For domain specific languages, “scripting languages”, dynamic lan-
guages, and for virtual machine-based languages, the most straight-
forward implementation strategy is to write an interpreter. A simple
interpreter consists of a loop that fetches the next bytecode, dis-
patches to the routine handling that bytecode, then loops. There are
many ways to improve upon this simple mechanism, but as long as
the execution of the program is driven by a representation of the
program other than as a stream of native instructions, there will be
some “interpretive overhead”.

There is a long history of approaches to removing interpretive over-
head from programming language implementations. In practice,
what often happens is that, once an interpreted language becomes
popular, pressure builds to improve performance until eventually a
project is undertaken to implement a nativeJust In Time(JIT) com-
piler for the language. Implementing a JIT is usually a large effort,
affects a significant part of the existing language implementation,
and adds a significant amount of code and complexity to the overall
code base.

In this paper, we present an innovative approach that dynamically
removes much of the interpreted overhead from language imple-
mentations, with minimal instrumentation of the original inter-
preter. While it does not give the performance improvements of
hand-crafted native compilers, our system provides an appealing
point on the language implementation spectrum.

Categories and Subject Descriptors

D.3 [Software]: Programming Languages; D.3.4 [Programming
Languages]: Processors—Interpreters

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
IVME’03, June 12, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-655-2/03/0006 ...$5.00

1 Introduction

Certain kinds of programming languages lend themselves to an
interpreted implementation: languages with a high degree of dy-
namism (e.g., dynamic OO languages), or with a premium on fast
startup and smaller programs (e.g., scripting languages), or where
simplicity of implementation is important. Indeed, it can be argued
that nearly all sufficiently complex applications have elements of
interpretation throughout1.

Typically, the language front end will transform the surface syntax
of a program to an intermediate representation of the program (e.g.,
bytecodes) that is then interpreted. A simple interpreter consists
of a loop that fetches the next bytecode, dispatches to the routine
handling that bytecode, then loops. There are many ways to im-
prove upon this simple mechanism, but as long as the execution of
the program is driven by a representation of the program other than
as a stream of native instructions, there will be some “interpretive
overhead”.

We take an approach that is a combination of nativeJust In Time
(JIT) compiler andpartial evaluationtechniques. We start with
a dynamic optimization system calledDynamoRIO, jointly devel-
oped at HP Labs and MIT. We give a quick overview of the Dy-
namoRIO system in Section 2.

DynamoRIO records sequences of native instructions, which are
subsequently partially evaluated with respect to the in-memory rep-
resentation of the program being interpreted.

Suppose the application program is represented as an immutable
vector of bytecodes, and we have a long trace of native instructions.
If we look carefully at the trace, there will typically be a value (we
call it the “Logical PC”) used as an index into the bytecode vector,
and there will be sequences of instructions as follows:

1Greenspun’s Tenth Rule of Programming: “Any sufficiently
complicated C or Fortran program contains an ad-hoc, informally-
specified, bug-ridden, slow implementation of half of Common
Lisp.”

1. Fetch the next bytecode, using the logical PC as an index into
the vector;

2. Possibly dereference other nearby bytecodes, to be used as
arguments to the handler for this bytecode;

3. A certain amount of conditional control flow may take place
based on the value of the bytecode (e.g., aswitch statement);

4. Jump to bytecode-specific instructions;
5. Increment the logical PC by a fixed amount;
6. Repeat.

The key insight of dynamic native partial evaluation is that if we
know the starting logical PC at the start of the above sequence,
then:

1. Dereferences from the bytecode array, indexed by the logical
PC, can be statically folded to constants,

2. Conditional branches based on now constant values can be
removed entirely, and

3. Direct increments to the logical PC can be identified and
tracked, thus enabling continued partial evaluation.

2 The DynamoRIO Dynamic
Optimization Framework

Our optimization infrastructure is built on a dynamic optimizer
called DynamoRIO. DynamoRIO is based on the IA-32 version [5]
of Dynamo [4]. It is implemented for both IA-32 Windows and
Linux, and is capable of running large desktop applications.

The goal of DynamoRIO is to observe and potentially manipulate
every single application instruction prior to its execution. The sim-
plest way to do this is with an interpretation engine. However, in-
terpretation via emulation is slow, especially on an architecture like
IA-32 with a complex instruction set. DynamoRIO uses a typi-
cal trick to avoid emulation overhead: it caches translations of fre-
quently executed code so they can be directly executed in the future.

DynamoRIO copiesbasic blocks(sequences of instructions ending
with a single control transfer instruction) into a code cache and ex-
ecutes them natively. At the end of each block the application’s
machine state must be saved and control returned to DynamoRIO
(a context switch) to copy the next basic block. If a target basic
block is already present in the code cache, and is targeted via a di-
rect branch, DynamoRIOlinks the two blocks together with a direct
jump. This avoids the cost of a subsequent context switch.

Indirect branches cannot be linked in the same way because their
targets may vary. To maintain transparency, original program ad-
dresses must be used wherever the application stores indirect branch
targets (for example, return addresses for function calls). These
addresses must be translated into their corresponding code cache
addresses in order to jump to the target code. This translation is
performed as a fast hashtable lookup.

To improve the efficiency of indirect branches, and to achieve better
code layout, basic blocks that are frequently executed in sequence
are stitched together into a unit called atrace. When connecting
beyond a basic block that ends in an indirect branch, a check is
inserted to ensure that the actual target of the branch will keep ex-
ecution on the trace. This check is much faster than the hashtable
lookup, but if the check fails the full lookup must be performed.
The superior code layout of traces goes a long way toward amor-
tizing the overhead of creating them and often speeds up the pro-
gram [4, 31].

A flow chart showing the operation of DynamoRIO is presented in

Figure 1. The figure concentrates on the flow of control in and out
of the code cache, which is the bottom portion of the figure. The
copied application code looks just like the original code with the
exception of its control transfer instructions, which are shown with
arrows in the figure.

Note that in this paper we will use the termfragmentto mean either
a basic block or a trace in the code cache.

3 Interpreters Confound
DynamoRIO

An important heuristic upon which DynamoRIO’s trace identifica-
tion and collection strategy is based is that popular targets of jumps
are good candidates fortrace heads. Furthermore, it is assumed
that execution will proceed most or all of the way through a trace
most of the time. In other words, recording long instruction streams
starting at common branch targets will result in execution spending
most of its time in recorded traces.

Unfortunately, typical interpreter implementations foil Dy-
namoRIO’s trace collection heuristic. In the case of a simple read-
switch-jump loop, the interpreter’s hottest loop head is in fact a poor
candidate for a trace head, as its body follows a different path for
each byte code type.

Threaded interpreters pose a related problem for DynamoRIO.
The pervasive use of indirect jumps for control transfer foils Dy-
namoRIO’s trace head identification heuristics, and, even if a trace
head were to be identified, the address of, e.g., theCALL bytecode
does not uniquely identify a commonly occurring long sequence of
native instructions.

3.1 Logical PC’s

The goal is to record a long series of native instructions that:
1. will often be invoked, and
2. will usually run most or all of the way to the end once started.

An important realization for applying dynamic optimization tech-
niques to interpreters is that we need a pair, (native PC, logical
PC) to uniquely identify the current overall computation point. By
logical PC, we mean some unique identifier into the control flow
structure of the interpreted application. Neither the logical nor na-
tive PC is sufficient. For example, the native PC corresponding to
the start of the handler for aCALL bytecode would be executed for
each call site encountered in an interpreted application. The log-
ical PC, on the other hand, might stay constant over a significant
amount of interpreter execution (consider the interpretation of the
invokevirtual JVM instruction). We call the (logical PC, native
PC) pair theabstract PC.

4 Instrumenting the Interpreter

There are two types of information the interpreter writer must sup-
ply to DynamoRIO: the identification of logical control flow actions
and the location of the immutable program representation used to
drive interpretation.

4.1 Logical Control Flow API

Every time that either the native PC changes (either by sequential
execution or a branch or jump) or the logical PC changes (by a

BASIC BLOCK CACHE
non−control−flow

instructions

TRACE CACHE
non−control−flow

instructions

START basic block builder

dispatch

trace selector

context switch

indirect branch lookup indirect branch
stays on trace?

Figure 1. Flow chart of the DynamoRIO System. Dark shading indicates application code.

change in the controlling state of the interpreter), the abstract PC
has changed. DynamoRIO provides the interpreter writer with a
simple API for identifying relevant changes in the control state of
the interpreter. Calls to these API functions enable DynamoRIO
to identify potentialtrace headsand also to link traces together.
Each of the three API functions correspond to typical native control
transfer operations:

logical direct jump(new logpc) corresponds to a direct na-
tive jump. By calling logicaldirect jump(x) at a particular
point (native PC) in the interpreter, call itn, the interpreter
writer promises that if the interpreter ever reachesn with the
logical PC equal to its current value, sayy, it will always make
the logical control transfer to the next interpreter instruction
(call it n+1) and logical PCx.

logical indirect jump(new logpc) corresponds to an indi-
rect native jump. As you might guess, this means that
the interpreter cannot make the guarantee required for
logical direct jump. A classic case of an indirect logi-
cal jump is the implementation of aRETURN bytecode, where
the actual target is based on runtime data (e.g., a value on the
stack) rather than a compile time constant.

logical relative jump(offset) corresponds to sequential na-
tive execution. Calling this function has the same guarantee
aslogical direct jump (that is, the current (native PC, log-
ical PC) will always advance to (native PC + 1, logical PC +
offset)) but also tells DynamoRIO that this transfer is “unin-
teresting”. This corresponds to the fact that sequential execu-
tion through native code also involves regular changes to the
native PC, but these are uninteresting control transfers.

Each of the threelogical * jump functions identifies, when
called, an abstract PC. The interpreter writer provides the logical
PC value, and DynamoRIO provides the native PC value, for any
given call. The native PC value for a logical control transfer is the
address of the instruction following the call to the logical PC API
function.

4.2 Identifying Immutable Program Data

In order for constant propagation to be able to fold dereferences of
the program representation to constant values, the interpreter writer

must identify regions of memory that hold immutable representa-
tions of the application, as well as identifying other memory loca-
tions that will be constant for given(logical PC, abstract PC)pairs.
There are three API functions for providing this information:

set region immutable(start, end) identifies the region of
memory delimited bystart and end (inclusive) as im-
mutable. set region immutable may be called for any
number of regions. Once called for a givenstart - endregion,
that region of memory must not be written to for the duration
of the program run.

add trace constant address(addr) identifies an address
whose value (i.e. when dereferenced) is guaranteed
to be the same whenever control reaches the ab-
stract PC of the call. For example, suppose a call
add trace constant address(&pc) is made when the
logical PC is currentlylpc, the native PC of the call site is
npc, and the value ofpc is 42. If DynamoRIO makes a trace
headed by abstract PC(lpc, npc), then any dereferences ofpc
can be folded to the constant 42. Furthermore, if this constant
is then used to dereference values in immutable memory (e.g.
bc = byte codes[pc]) that dereference can also be folded
to a constant.

set trace constant stack address(addr, val) identifies a
stack-allocated variable (at addressaddr on the stack)
that currently has the valueval. The meaning of a
call set trace constant stack address(&pc, pc) is just
like a call toadd trace constant address(&pc) described
above, except that the current value (pc) is made explicit in
the call so that Dynamo can note the stack offset calcula-
tion used to dereference the stack-allocated variable. Dy-
namoRIO will only fold dereferences ofaddr to a con-
stant when control is within the stack frame of the call to
set trace constant stack.

If an address is identified as containing a trace constant, that address
must not bealiased. That is, ifpc is identified as a trace constant,
changes to the value stored inpc must be apparent in the instruction
sequence, rather than indirectly through another memory location.

For example,

ByteCode* pc = . . .;
ByteCode* alias = pc;
add trace constantaddress(&pc);
*alias = somebytecode;

would violate the anti-aliasing requirement.

5 Example: TinyVM

In this section, we present a simple VM calledTinyVM, written in C,
to demonstrate the instrumentation by a programmer and the run-
time optimization performed by DynamoRIO2.

We start by adding calls todynamorio app init and
dynamorio app start to the startup code of TinyVM. Similarly,
we arrange to calldynamorio app stop and
dynamorio app exit when TinyVM exits. This is standard proce-
dure for using DynamoRIO, as explained in the DynamoRIO docu-
mentation.

The main dispatch loop of TinyVM deconstructs the element of the
bytecode vectorinstrs pointed to the logical PCpc, then finds the
matching case in aswitch statment:

loop:
op = instrs[pc].op;
arg = instrs[pc].arg;
switch (op) {

. . .

Calls to functions are statically dispatched, and the target (bytecode
offset) of the call is embedded in the bytecode stream. Thus, a
call is a direct jump (i.e., from a given callsite, control will always
transfer to the same target), and we instrument the handling of the
CALL opcode as follows:

caseCALLOP:
. . . setup new call frame. . .
pc = arg; /* go to start of function body */
dynamorio logical direct jump(pc);
goto loop;

As mentioned earlier, aRETURN bytecode is a case of an indirect
logical control transfer. We instrument theRETURN case as follows:

caseRETOP:
. . . clean up stack. . .
pc = pop raw(); /* pop the return PC */
dynamorio logical indirect jump(pc);
(++sp) = val; / put return value back on stack */
goto loop;

The case for bytecodes implementing conditional branches is more
interesting. You might think that the logical branches would be
indirect, but in fact they are often direct. In the following code,
implementing theBEQ bytecode, the true branch is a direct logical
jump (recall that thearg value came from the bytecode vector), and

2TinyVM will be available in the released version of Dy-
namoRIO as an example.

the false branch is a direct relative branch:

caseBEQOP:
n = pop int(); /* top must be an int */
if (n) { /* not equal 0 */

pc++; /* just continue */
dynamorio logical relative jump(1);
} else{ /* equal 0 */

pc = arg; /* do the branch */
dynamorio logical direct jump(pc);
}
goto loop;

The reason the logical transfers are direct is that the native condi-
tional branch has already distinguished between the true and false
cases. For each call todynamorio logical *, the combination of
the current native PC and the current logical PC uniquely identifies
the target (native PC, target PC) abstract PC.

Finally, we inform DynamoRIO of immutable regions of memory
and of any logical PC pointers:

set region immutable(instrs,
(instrs + num instrs*sizeof(ByteCode)−1));

dynamorioadd trace constantaddress(&pc);

6 Collecting Logical Traces

The interpreter writer supplies the target logical PC (or offset) to
the dynamorio logical * calls. When first processing the ba-
sic block, DynamoRIO adds the global DynamoRIO context, the
native PC, and some “from context” data to the call also, so the
actual functions receive four arguments. The translation of a call
logical direct jump(x) at native PCn is given in Figure 2.

push x ; logical pc
call set_log_pc ; saves logpc (x) in a global
pop 1
jmp exit_stub

...
exit_stub:
push dcontext ; add arg. for logical_jump call
push n+1 ; add native PC arg.
push from_data ; for linking traces
call logical_direct_jump
test next_logical_trace ; if logical jmp to trace
jne *next_logical_trace ; go there
next_addr = n+1 ; otherwise
jmp dynamo_dispatch ; go to dynamorio with native PC = n+1

Figure 2. Translation of logical direct jump(x) at instruc-
tion n

Given the target logical and native PC’s, DynamoRIO proceeds as

outlined by the following pseudo-code:

logical jump(dcontext, native pc, logical pc, from) {
if (currently building a trace) {

set flag telling DynamoRIO to finish trace;
} else{ /* if not currently building a trace */

/* get logical basic block for (logical, native) abstract PC */
lbb = lookup(native pc, logical pc),

adding new entryif necessary;
lbb−>count++; /* count hits */
if ((native PC, logical PC) entry corresponds

to a trace) {
if (we are coming from a trace&&

this is a direct logical jump) {
link the two traces together;
}
next logical trace= lbb−>trace;

} else{ /* lbb not a trace */
/* should we build a trace? */
if (lbb−>count> hot threshold) {

set flags to start DynamoRIO tracing;
}

}
}

Whenlogical jump is called during trace building mode with a di-
rect or indirect logical jump, we signal DynamoRIO to finish build-
ing the trace. Thus each trace is headed by the target of a logi-
cal control transfer and ends with another logical control transfer.
When DynamoRIO installs the trace, the trace is associated with
the (logical PC, native PC) pair in the logical basic block table.

The first time inlogical jump for a given (logical PC, native PC)
abstract PC, the pair will not be found in the “logical basic block
table”, and an entry will be added.

After the same abstract PC has been seenhot threshold times,
from direct or indirect logical jumps, we set flags to signal Dy-
namoRIO’s top level loop that we should start recording a trace,
keyed by the (logical PC, native PC) pair. While trace building
is active, DynamoRIO collects each basic block encountered into
a contiguous list of instructions (this is regular DynamoRIO trace
collection).

The next timelogical jump encounters an abstract PC for which a
trace exists, it setsnext logical trace (a field in the thread-local
dcontext structure), and when control returns to the exit stub, the
exit stub jumps directly to that target logical trace, without returning
to DynamoRIO’s dispatch loop.

Finally, if a logical basic block entry has a corresponding trace,
and thefrom-data supplied by DynamoRIO indicates that we are
following a direct logical control transfer from another trace, we
link the two traces.

Linking two traces involves replacing thejmp exit stub instruc-
tion in Figure 2 with a jump directly to the target logical trace frag-
ment.

7 Trace Optimization

By organizing traces by the logical and native PC’s, instead of
the native PC’s that regular DynamoRIO uses, we improve perfor-
mance so that the DynamoRIO system has little overhead compared
to running without DynamoRIO. In some cases, we even improve
performance over native (not under DynamoRIO) execution.

We then apply relatively simple but aggressive constant propagation
to the recorded traces.

7.1 Constant Propagation

We apply standard constant propagation, made more challenging by
the fact that we are doing it for the X86 instruction set. Crucial to
the success of constant propagation is being able to fold references
into immutable memory to constants. As mentioned earlier, we use
set region immutable calls from the interpreter to establish con-
stant memory regions. Furthermore, the*trace constant* calls
register addresses whose contents we can rely on at the start of any
given trace.

7.2 Call-Return Matching

DynamoRIO performs expensive checking when a return is encoun-
tered, because a return is basically an indirect branch. If static anal-
ysis of the trace reveals that the return matches a call site in the
trace, then the return overhead can be elimintated. By removing
some jumps, call-return matching enables other optimizations.

7.3 Dead Code Elimination

Constant propagation produces dead code, such as from storing no
longer needed temporary values or from statically dispatching con-
ditionals, and DynamoRIO collects dead code during its optimiza-
tion.

8 Experimental Results

Figure 3 shows the running times of six benchmarks, normalized to
the execution time on TinyVM without DynamoRIO.

We see that running under regular Dynamo slows down the applica-
tion significantly (by almost a factor of two for some of the bench-
marks). While adding logical tracing recovers some performance
(fib-iter, sieve), it is clear that we need both logical tracing and op-
timization.

Fragment Size Time Exits
1 1201 30.5% S1: 66.2%

S7: 6.8%
S10: 27.0%

2 1849 6.1% S15: 100.0%
3 1909 6.1% S7: 2.4%

S16: 97.6%
4 366 5.9% S1: 18.2%

S2: 14.9%
S3: 66.9%

Figure 4. Fragment Size and Exit Statistices, Sieve Benchmark,
regular DynamoRIO

The primary reason that regular DynamoRIO loses so much perfor-
mance can be gleaned from the results of DynamoRIO’s profiling
tools. Figure 4 shows the top four traces for a run of a Sieve of Er-
atosthenes finding the first 30,000 prime numbers. Not only are the
traces relatively short (about 1KB), but the hottest trace exits from
its first exit (a conditional, taking the non-trace branch) 66% of the
time.

Figure 5 shows the same profiling information for the application
running under DynamoRIO with logical PC tracking. We see much
longer traces, and the hottest trace exits at the end 97% of the time.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fib2 fib_ref Bubble Matrix2 Matrix Sieve2 Sieve-loop

 Dynamorio Dynamorio+Opt Logical PC Logical PC + Opt

Figure 3. Running Times in Four Configurations, Normalized against Native (Without DynamoRIO)

Fragment Size Time Exits
1 25255 48.1% S34: 2.4%

S242: 97.6%
2 36301 29.0% S347: 100.0%
3 18834 15.0% S161: 10.8%

S178: 89.2%
4 10119 7.1% S97: 100.0%

Figure 5. Fragment Size and Exit Statistices, Sieve Benchmark,
DynamoRIO and Logical PC Tracing

In the fib-recurse benchmark, we actually see a slowdown when
running with logical tracing instead of regular DynamoRIO. This is
because of a large number of returns, which cause a lookup in our
logical basic block table.

Figure 6 compares the contributions of the different optimizations
we apply. It is surprising that constant propagation by itself does
not contribute much. We get the single biggest improvement from
call-return matching.

9 Related Work

Moore and Leach [27] describe writing threaded interpreters. Pi-
umarta and Riccardi [29] go further with dynamically generated
bytecode sequences.

Dynamic compilation has proven essential for efficient implemen-
tation of high-level languages [13, 1]. Some just-in-time compilers
perform profiling to identify which methods to spend more opti-
mization time on [20]. The Jalapeño Java virtual machine [3, 23]
utilizes idle processors in an SMP system to optimize code at run-
time. Jalapẽno optimizes all code at an initial low level of opti-
mization, embedding profiling information that is used to trigger re-
optimization of frequently executed code at higher levels. Self [19]
uses a similar adaptive optimization scheme.

Staged dynamic compilers postpone a portion of compilation un-
til runtime, when code can be specialized based on runtime val-
ues [11, 17, 24, 25, 16]. These systems usually focus on spending
as little time as possible in the dynamic compiler, performing ex-
tensive offline pre-computations to avoid needing any intermediate
representation at runtime.

API-less dynamic optimization systems include Dynamo [4] for
PA-RISC; Wiggins/Redstone [12], which employs program counter
sampling to form traces that are specialized for a particular Alpha
machine; and Mojo [7], which targets Windows NT running on IA-
32, but has no available information beyond the basic infrastructure
of the system. Kistler [21] proposes “continuous program optimiza-
tion” that involves operating system re-design to support adaptive
dynamic optimization.

Hardware dynamic optimization of the instruction stream is per-
formed in superscalar processors. The Trace Cache [31] allows
such optimizations to be performed off of the critical path.

Dynamic translation systems resemble dynamic optimizers in that
they cache native translations of frequently executed code. Do-
mains include instruction set emulation [9, 15] and binary com-
patibility [8, 22]. Recent dynamic translation systems such as
UQDBT [33] and Dynamite [30] separate the source and target ar-
chitectures to create extensible systems that can be re-targeted.

Dynamic instrumentation can be used to build runtime code analyz-
ers and, to some degree, runtime code modifiers. Both Dyninst [6]
and Vulcan [32] can insert code into running processes. It is based
on dynamic instrumentation technology [18] developed as part of
the Paradyn Parallel Performance Tools project [26].

Other related fields include link-time optimization [28, 10] and low-
overhead profiling [2, 14].

0

0.5

1

1.5

2

2.5

Fib2 fib_ref Bubble Matrix2 Matrix Sieve2 Sieve-loop

const. prop. dead code dead code +
const. prop

call-return all opt.s

Figure 6. Contributions of Separate Optimizations, Normalized to DynamoRIO with Logical Tracing

10 Future Work

The research presented in this paper is a proof-of-concept for the
idea of applying general purpose dynamic optimization techniques
and native dynamic partial evaluation to interpreters.

We are currently working on applying this version of DynamoRIO
to “real” interpreters, including OCAML and Kaffe. OCAML is a
well-implemented threaded interpreter for a variant of the ML lan-
guage. Kaffe is a very slow implementation, using recursive tree
walking, of Java; Kaffe’s interpreter can afford to be extremely
slow, because the implementation also includes a reasonable JIT
compiler. We expect very good results from applying our technol-
ogy to OCAML. For Kaffe, we are generalizing the DynamoRIO-
interpreter API to allow for multiple “logical PC” like values and to
allow those values to be on the stack (to handle recursive interpre-
tation).

There are also a number of straightforward engineering improve-
ments that should improve the performance of the system.

We do not handle long loops within single bytecode implementa-
tions – they are unrolled in place. Currently we simply specify a
maximum number of blocks per trace, and truncate the trace if we
hit the maximum. We would like to avoid this sort of loop unrolling
in the first place, and translate back jumps as jumps.

We are investigating adding more sophisticated alias analysis in or-
der to enable constant propagation to track constant values through
memory.

11 Conclusion

There will always be interpreted languages, and only some imple-
mentation efforts can afford the time and money to produce a native
compiler.

We present a novel approach to improving the performance of in-
terpreters. The interpreters do not have to be written in a particu-
lar style; they need only annotatations identifying a logical PC and
regions of immutable memory (particularly the program represen-
tation). DynamoRIO then performs trace recording and aggressive
partial evaluation of the X86 code to produce substantially opti-
mized traces of the running interpreter. We have applied these tech-
niques to simple interpreters and shown that this approach can pro-
vide substantial speedups with minimal instrumentation from the
interpreter writer. We are currently working on applying these tech-
niques to more sophisticated interpreters.

12 References

[1] A.-R. Adl-Tabatabai, M. Cierniak, G.-Y. Lueh, V. M. Parikh,
and J. M. Stichnoth. Fast, effective code generation in a just-
in-time Java compiler. InProceedings of the SIGPLAN’98
Conference on Programming Language Design and Imple-
mentation, June 1998.

[2] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.
Henzinger, S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde,
C. A. Waldspurger, and W. E. Weihl. Continuous profiling:
Where have all the cycles gone? In16th ACM Symposium on
Operating System Principles (SOSP ’97), Oct. 1997.

[3] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive optimization in the Jalapeño JVM. In 2000 ACM
SIGPLAN Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’00), Oct. 2000.

[4] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A trans-
parent runtime optimization system. InProceedings of the
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI ’00), June 2000.

[5] D. Bruening, E. Duesterwald, and S. Amarasinghe. Design
and implementation of a dynamic optimization framework for

Windows. In4th ACM Workshop on Feedback-Directed and
Dynamic Optimization (FDDO-4), Dec. 2001.

[6] B. R. Buck and J. Hollingsworth. An API for runtime code
patching.Journal of High Performance Computing Applica-
tions, 14(4):317–329, Winter 2000.

[7] W.-K. Chen, S. Lerner, R. Chaiken, and D. M. Gillies. Mojo:
A dynamic optimization system. In3rd ACM Workshop
on Feedback-Directed and Dynamic Optimization (FDDO-3),
Dec. 2000.

[8] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin,
T. Tye, S. B. Yadavalli, and J. Yates. FX!32: A profile-
directed binary translator.IEEE Micro, 18(2), Mar. 1998.

[9] R. F. Cmelik and D. Keppel. Shade: A fast instruction-set
simulator for execution profiling. InSIGMETRICS, 1994.

[10] R. Cohn and P. G. Lowney. Hot cold optimization of large
Windows/NT applications. In29th Annual International Sym-
posium on Microarchitecture (MICRO ’96), Dec. 1996.

[11] C. Consel and F. N̈oel. A general approach for run-time
specialization and its application to C. InACM Symposium
on Principles of Programming Languages (POPL ’96), Jan.
1996.

[12] D. Deaver, R. Gorton, and N. Rubin. Wiggins/Restone: An
on-line program specializer. InProceedings of Hot Chips 11,
Aug. 1999.

[13] L. P. Deutsch and A. M. Schiffman. Efficient implementation
of the Smalltalk-80 system. InACM Symposium on Principles
of Programming Languages (POPL ’84), Jan. 1984.

[14] E. Duesterwald and V. Bala. Software profiling for hot path
prediction: Less is more. InProceedings of the 12th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’00), Oct. 2000.

[15] K. Ebcioglu and E. Altman. DAISY: Dynamic compilation
for 100% architectural compatibility. In24th Annual Inter-
national Symposium on Microarchitecture (ISCA ’97), June
1997.

[16] E. Feigin. A Case for Automatic Run-Time Code Optimiza-
tion. Senior thesis, Harvard College, Division of Engineering
and Applied Sciences, Apr. 1999.

[17] B. Grant, M. Philipose, M. Mock, C. Chambers, and S. Eg-
gers. An evaluation of staged run-time optimizations in DyC.
In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’99),
May 1999.

[18] J. Hollingsworth, B. Miller, and J. Cargille. Dynamic pro-
gram instrumentation for scalable performance tools. InPro-
ceedings of the 1994 Scalable High-Performance Computing
Conference, May 1994.

[19] U. Hölzle. Adaptive Optimization for Self: Reconciling High
Performance with Exploratory Programming. PhD thesis,
Stanford University, 1994.

[20] The Java HotSpot performance engine architecture.

[21] T. Kistler and M. Franz. Continuous program optimization:
Design and evaluation.IEEE Transactions on Computers,
50(6), June 2001.

[22] A. Klaiber. The technology behind Crusoe processors. Trans-
meta Corporation, Jan. 2000.

[23] C. Krintz, D. Grove, V. Sarkar, and B. Calder. Reducing the
overhead of dynamic compilation.Software: Practice and
Experience, 31(8), Mar. 2001.

[24] P. Lee and M. Leone. Optimizing ML with run-time code gen-
eration. InProceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI
’96), May 1996.

[25] M. Leone and R. K. Dybvig. Dynamo: A staged compiler ar-
chitecture for dynamic program optimization. Technical Re-
port 490, Department of Computer Science, Indiana Univer-
sity, Sept. 1997.

[26] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kunchitha-
padam, and T. Newhall. The Paradyn parallel performance
measurement tools.IEEE Computer, 28(11):37–46, Nov.
1995.

[27] C. H. Moore and G. C. Leach. Forth – a language for inter-
active computing. Technical report, Mohasco Industries, Inc.,
Amsterdam, NY, 1970.

[28] R. Muth, S. Debray, S. Watterson, and K. D. Bosschere. alto :
A link-time optimizer for the Compaq Alpha.Software Prac-
tice and Experience, 31:67–101, Jan. 2001.

[29] I. Piumarta and F. Riccardi. Optimizing direct-threaded code
by selective inlining. InSIGPLAN Conference on Program-
ming Language Design and Implementation, pages 291–300,
1998.

[30] A. Robinson. Why dynamic translation? Transitive Technolo-
gies Ltd., May 2001.

[31] E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache: A low
latency approach to high bandwidth instruction fetching. In
29th Annual International Symposium on Microarchitecture
(MICRO ’96), Dec. 1996.

[32] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary trans-
formation in a distributed environment. Technical Report
MSR-TR-2001-50, Microsoft Research, Apr. 2001.

[33] D. Ung and C. Cifuentes. Machine-adaptable dynamic bi-
nary translation. InProceedings of the ACM SIGPLAN Work-
shop on Dynamic and Adaptive Compilation and Optimiza-
tion, Jan. 2000.

