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Abstract

Software code caches are becoming ubiquitous, in dy-
namic optimizers, runtime tool platforms, dynamic transla-
tors, fast simulators and emulators, and dynamic compil-
ers. Caching frequently executed fragments of code pro-
vides significant performance boosts, reducing the over-
head of translation and emulation and meeting or exceed-
ing native performance in dynamic optimizers. One dis-
advantage of caching, memory expansion, can sometimes
be ignored when executing a single application. However,
as optimizers and translators are applied more and more
in production systems, the memory expansion from running
multiple applications simultaneously becomes problematic.
A second drawback to caching is the added requirement of
maintaining consistency between the code cache and the
original code. On architectures like IA-32 that do not re-
quire explicit application actions when modifying code, de-
tecting code changes is challenging. Again, consistency can
be ignored for certain sets of applications, but as caching
systems scale up to executing large, modern, complex pro-
grams, consistency becomes critical. This paper presents
efficient schemes for keeping a software code cache consis-
tent and for dynamically bounding code cache size to match
the current working set of the application. These schemes
are evaluated in the DynamoRIO runtime code manipula-
tion system, and operate on stock hardware in the pres-
ence of multiple threads and dynamic behavior, including
dynamically-loaded, generated, and even modified code.

1 Introduction

Software code caching began as a technique for reduc-
ing the overhead of emulation and dynamic translation,
and has been adapted for runtime tools and dynamic opti-
mizers, where it enables meeting and even exceeding na-
tive performance. Unfortunately, the benefits of caching
come at the cost of cache consistency and memory expan-
sion. For running a single, static application, such as a

SPEC CPU2000 [35] benchmark, neither of these issues
is a concern, as application code is fixed at load time and
has a small footprint (relative to data size). However, as
code caching systems become more prevalent and are scaled
up to large, modern, complex programs, consistency be-
comes critical; and, as optimizers and translators are applied
more and more in production systems, the memory expan-
sion from running multiple applications simultaneously be-
comes problematic.

Executing application code from a cache requires main-
taining consistency between the cache and the original code.
Previous systems have handled consistency by monitoring
requests to flush the hardware instruction cache. On archi-
tectures like IA-32 that do not require explicit application
actions when modifying code, detecting code changes is
much more challenging. While consistency can be ignored
for certain sets of applications, modern programs with plu-
gins and dynamically-generated code require cache consis-
tency for correct execution, as consistency events are not
limited to self-modifying code and include common ac-
tions like library unloading, rebasing, and rebinding, and
re-use of memory regions for generated code. Enforc-
ing consistency in software is expensive, both in detecting
changes and synchronizing code cache views among mul-
tiple threads. Existing systems that support consistency
on IA-32 have custom hardware and execute underneath
the operating system, avoiding interactions with threads.
One contribution of this paper is a scheme for efficiently
maintaining consistency in the presence of multiple threads,
called non-precise flushing, that requires no hardware sup-
port.

Nearly all code caching systems size the code cache with
a generous static bound and assume it will rarely be reached,
and when it is, the cache is typically flushed in its entirety.
Prior work on managing code caches has focused on evic-
tion policies and not on how to bound the cache size in the
first place. Hard limits that work for small benchmark suites
do not adapt to modern applications, whose code sizes vary
dramatically and often range in the megabytes. This paper’s
second contribution is a novel algorithm for dynamically
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Figure 1. Flow chart of DynamoRIO. A con-
text switch separates the code cache from
DynamoRIO code (though it all executes in
the same process and address space). Ap-
plication code is copied into the two caches,
with control transfers (shown by arrows in the
figure) modified in order to retain control.

limiting code cache size to match the current working set of
the application.

The cache consistency (Section 3) and capacity (Sec-
tion 4) algorithms described in this paper are fully imple-
mented and evaluated in a real code caching system, Dy-
namoRIO [3], which is described in the next section.

2 Evaluation Methodology

DynamoRIO is a system for general-purpose runtime
code manipulation whose goals are transparency, efficiency,
and comprehensiveness [3]. It executes a target application
by copying its code, one basic block at a time, into a code
cache. Indirecting control through the cache permits cus-
tom transformations of the code for any number of runtime
tools: instrumentation, profiling, compatibility layers, de-
compression, security, etc.

Figure 1 shows the components of DynamoRIO and the
flow of operations between them. The figure concentrates
on the flow of control in and out of the code cache, which
is the bottom portion of the figure. The cached application
code looks just like the original code with the exception of
its control transfer instructions (shown with arrows in the
figure), which must be modified to ensure that DynamoRIO
retains control. Overhead is amortized by directly linking
blocks together that are joined by direct branches, and per-
forming fast table lookups to transition between blocks via

Program Benchmark description Thrds Fragmnts Perf

SPECFP Floating-point 1 3232 1.02x

SPECINT Integer 1 8806 1.17x

SPECJVM Java apps under Sun
Java2 JVM 1.4.2.06

10 59323 2.44x

excel Microsoft Excel 9.0:
2.4MB spreadsheet
re-calculations

4 77174 1.11x

photoshp Adobe Photoshop
6.0: modeled on
PS6bench [28] Action

8 171962 1.36x

powerpnt Microsoft PowerPoint
9.0: modifies 84 slides

5 105054 1.63x

winword Microsoft Word 9.0:
searches & modifies a
1.6MB document

4 98358 1.31x

Table 1. Our benchmark suite, and for each
benchmark the simultaneously-live threads,
code cache fragments, and slowdown versus
native when executed under DynamoRIO.

indirect branches, avoiding the costly context switch back
to DynamoRIO code in both cases. Additional performance
is gained by eliding unconditional control transfers in ba-
sic blocks and stitching together frequently executed se-
quences of basic blocks into traces. Traces are kept in their
own code cache, and enable inlining of indirect branches
to avoid lookup overhead. Both the basic block cache and
trace cache are thread-private (Section 4.1). We use the
term fragment to refer to either a basic block or a trace in
the code cache.

DynamoRIO is capable of running large, complex, real-
world applications on stock IA-32 hardware under both
Windows and Linux. This allows us to evaluate our cache
management algorithms in realistic scenarios. Our bench-
mark set consists of the SPEC CPU2000 [35] benchmarks
(minus the FORTRAN 90 programs) on Linux and the
SPEC JVM98 [34] benchmarks and four large desktop ap-
plications on Windows (Table 1). Although the SPEC CPU
suite is single-threaded, it is excellent for measuring perfor-
mance impact on computationally-intensive applications.
Our approach is to build cache management algorithms that
target large commercial desktop applications while not los-
ing performance on SPEC CPU. Our desktop benchmarks
consist of long-running batch computations [3], which are
more computationally bound than interactive scenarios that
tend to mask slowdowns. We include the SPECJVM bench-
marks for intensive tests of generated code. Cache consis-
tency events are so frequent here that code caching perfor-

2



Memory Generated Code region
Benchmark unmappings code regions modifications
SPECFP 112 0 0
SPECINT 29 0 0
SPECJVM 7 3373 4591
excel 144 21 20
photoshp 1168 40 0
powerpnt 367 28 33
winword 345 20 6

Table 2. The number of memory unmappings,
generated code regions, and modifications of
code regions in our benchmarks.

mance is difficult to achieve. The efficient schemes in this
paper allow DynamoRIO to approach a two times slow-
down. We use the entire virtual machine as a benchmark
and thus include all ten of the Java applications, including
the correctness tests.

3 Code Cache Consistency

Any system that caches copies of application code must
ensure that each copy is consistent with the original version
in application memory. The original copy might change due
to de-allocation of memory, e.g., the unmapping of a shared
library containing the code, or dynamic modification of the
code.

3.1 Memory Unmapping

Unmapping of files is relatively frequent in large Win-
dows applications (Table 2). Memory unmapping that af-
fects code is nearly always unloading of shared libraries,
but any file unmap or heap de-allocation can contain code.
Unmapping is the simpler of the two consistency prob-
lems to solve, as we need only watch for explicit re-
quests to the kernel to unmap files or free address space
(the system calls munmap and mremap on Linux and
NtUnmapViewOfSection, NtFreeVirtualMemory, and
NtFreeUserPhysicalPages [25] on Windows). When
we see such a request, we flush from the cache all frag-
ments that contain pieces of code from the target region
(Section 3.6).

3.2 Memory Modification

While true self-modifying code is only seen in a few ap-
plications, such as Adobe Premiere and games like Doom,
general code modification is surprisingly prevalent. The
Windows loader directly modifies code in shared libraries

for rebasing [23], and modifies the Import Address Ta-
ble [27] for rebinding. Since this table is often kept in the
first page of the code section, modifications to it look like
code modifications if the entire section is treated as one re-
gion. Code memory re-use occurs with trampolines used
for nested function closures [15], which are often placed on
the stack. As the stack is unwound and re-wound, the same
address may be used for a different trampoline later in the
program. Memory modification also occurs with just-in-
time (JIT) compiled code, mainly to data in the same region
as the generated code (false sharing), generation of addi-
tional code in the same region as previously generated code,
or new generated code that is replacing old code at the same
address. Table 2 summarizes the frequency of memory re-
gion modifications in our benchmarks.

On most architectures, software must issue explicit re-
quests to clear the processor’s instruction cache when mod-
ifying code [20]. In contrast, IA-32 maintains instruction
cache consistency in hardware, making every write to mem-
ory a potential code modification. Therefore, we must mon-
itor all memory writes to detect those that affect code, ei-
ther by sandboxing each write with inserted instrumentation
(Section 3.3) or by using hardware page protection. Page
protection provides good performance when modifications
are infrequent, but forces monitoring to follow page bound-
aries, leading to cases of false sharing.

Our cache consistency invariant is this: to avoid execut-
ing stale code, every application region that is represented
in the code cache must either be read-only or have its code
cache fragments sandboxed to check for modifications. Dy-
namoRIO keeps an executable list of all memory regions
that have been marked read-only or sandboxed and thus may
safely be executed. The list is initially populated with the
memory regions marked executable but not writable when
DynamoRIO takes control. Both the Windows and Linux
executable formats mark code pages as read-only, so for the
common case all code begins on our executable list. The list
is updated as regions are allocated and de-allocated through
system calls (we ignore user memory management through
malloc and other calls because it is infeasible to identify
all internal memory parceling).

When execution reaches a region not on the executable
list, the region is added, and (if necessary) DynamoRIO
marks it read-only. If a read-only region is written to, we
trap the fault, flush the code for that region from the code
cache (Section 3.6), remove the region from the executable
list, mark the region as writable, and then re-execute the
faulting write. However, if the writing instruction and its
target are in the same region, no forward progress will be
made with this strategy. Our solution for this self-modifying
code is discussed in the next section.

For error transparency we must distinguish write faults
due to our page protection changes from those that would
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occur natively. When we receive a write fault targeting an
area of memory that the application thinks is writable, that
fault is guaranteed to belong to us, but all other faults must
be routed to the application. Additionally, we must intercept
Windows’ QueryVirtualMemory system call and modify
the information it returns to pretend that appropriate areas
are writable. Similarly, if the application changes the pro-
tection on a region, we must update our information so that
a later fault will be handled properly.

3.3 Self-Modifying Code

Read-only code pages do not work when the writing in-
struction and the target are on the same page (or same re-
gion, if regions are larger than a page). These situations
may involve actual self-modifying code, code region re-use,
or false sharing (writes to data near code, or generation of
code near existing code). Marking code pages as read-only
also fails when the code is on the Windows stack, for rea-
sons explained below.

To make forward progress when the writer and the target
are in the same region, we could emulate the write instruc-
tion, although at a performance hit due to the complexity
of IA-32. Instead, we mark the region as writable and turn
to sandboxing. Each fragment from a writable region ver-
ifies that its own code is not stale by storing a copy of its
source application code. A check is inserted at the top of
the fragment comparing the current application code with
the stored copy, which must be done one byte at a time. If
the copies are different, the fragment is exited and immedi-
ately flushed. If the check passes, the body of the fragment
may be executed, but each memory write must be moni-
tored to detect whether code later in the fragment is being
modified. If any of these checks fails, we again exit the frag-
ment and immediately flush it. Even though IA-32 proces-
sors from the Pentium onward correctly handle modifying
the next instruction, Intel strongly recommends executing
a branch or serializing instruction prior to executing newly
modified code [18, vol. 3]. If all applications followed this,
it would obviate the need to check for modification after
each write.

This strategy will not detect one thread modifying code
while another is inside a fragment corresponding to that
code — the code modification will not be detected until
the next time the target fragment is entered. To mitigate
this possibility we terminate fragments at application syn-
chronization operations (Section 3.6). Another problem is
that Windows does not support an alternate exception han-
dling stack, forcing us to use sandboxing for any code on
the stack, and opening up pathological cases where the stack
pointer is later pointed at a writable region [3, p. 151].

Sandboxing has a significant space penalty from its re-
dundant code copies and added write instrumentation. Ad-

ditionally, sandboxing incurs a significant performance hit:
when applied to all fragments, SPEC CPU is an average 14
times slower, ranging from 3 to 47 times slower on indi-
vidual benchmarks. Although optimization of our instru-
mentation could improve performance, sandboxing should
generally be avoided in favor of page protection.

3.4 Memory Regions

The unit of consistency events, the memory region, must
be at least as large as a page in order to utilize page pro-
tection. If regions are too large, a single code modification
will flush many fragments, which is expensive. On the other
hand, small regions create a longer executable list and po-
tentially many more protection system calls to mark code
as read-only. Large regions work well when code is not
being modified, or is modified in a separate phase from ex-
ecution, but small regions are more flexible for separating
a code writer from its target and avoiding false sharing and
unnecessary flushing.

DynamoRIO uses an adaptive region granularity to fit
regions to the current pattern of code modification. Our
initial region definition is a maximal contiguous sequence
of pages that have equivalent protection attributes. Since
nearly all code regions are read-only to begin with and are
never written to, these large regions work well. On a write
to a read-only region containing code, we split that region
into three pieces: the page being written, which has its frag-
ments flushed and is marked writable and removed from our
executable list, and the regions on either side of that page,
which stay read-only and executable. If the writing instruc-
tion is on the same page as the target, we mark the page as
self-modifying. Our executable list merges adjacent regions
with the same protection privileges, resulting in an adaptive
split-and-merge strategy that maintains large regions where
little code is being modified and small regions in heavily
written-to areas of the address space.

3.5 Mapping Regions to Fragments

Whatever region sizes we use, we must be able to lo-
cate all fragments in the code cache containing code from
a particular region. Since our runtime system stitches to-
gether basic blocks across unconditional control transfers
and builds traces out of frequently executed sequences of
basic blocks, any given fragment might contain code from
several widely separated regions. DynamoRIO solves this
by storing a list of fragments with each executable list re-
gion entry. A given fragment may have multiple entries, one
for each region from which it contains code.

An alternative mapping strategy is to save space by not
storing anything: since the original code is read-only and
cannot have changed, each fragment’s source code can be
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Figure 2. Performance impact of schemes for
mapping regions to fragments, versus our
chosen solution of per-region fragment lists,
on our multithreaded benchmarks.

examined to determine which regions it touches. The work
in re-creating can be reduced by recording, for each basic
block built, whether it occupies more than one page, allow-
ing a simple starting address check for all such blocks, lim-
iting recreation to multi-page fragments. However, any re-
creation has prohibitive performance impact, as shown in
Figure 2. Even avoiding all recreation by restricting frag-
ments to never cross page boundaries (allowing a start ad-
dress check for all fragments) has an average 14% slow-
down, because it must consider every single fragment —
potentially hundreds of thousands — in order to find the
handful that are in the target region.

3.6 Non-Precise Flushing

Even if code caches are thread-private, a memory un-
mapping or code modification affects all threads’ caches,
since they share the same address space, and requires syn-
chronization of cache flushing. The actual invalidation of
modified code in each thread’s code cache must satisfy the
memory consistency model in effect. In contrast to soft-
ware distributed shared memory systems [24], a runtime
code caching system cannot relax the consistency model by
changing the programming model for its target applications.
DynamoRIO aims to operate on arbitrary application bina-
ries, which have already been built assuming the underlying
hardware’s consistency model. Any significant relaxation
DynamoRIO implements may break target applications and
needs to be considered carefully.

To support all applications on IA-32 we must follow se-
quential consistency [21], which requires immediate invali-
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Figure 3. Performance impact of suspending
all threads on every cache flush, versus our
non-precise flushing, on our multithreaded
benchmarks.

dation of all affected fragments from the code cache of ev-
ery thread; otherwise, stale code could be executed. The
only mechanism to identify in which fragment a thread is
executing in the code cache, short of prohibitively expen-
sive instrumentation, is stopping the thread to examine it.
Thus, the only viable flushing approach is brute-force: sus-
pending all threads and forcibly moving those inside of to-
be-invalidated code. Threads may frequently be found in-
side of to-be-deleted regions, as it may have been data that
was written to rather than code (false sharing). No thread
can be resumed until the target code is not reachable inside
the code cache. If writes to code regions are frequent, sus-
pending all threads is an impractical solution, as shown in
Figure 3.

We have developed a relaxation of the consistency model
that allows a more efficient invalidation algorithm that we
call non-precise flushing. Our relaxed consistency model
is similar to weak consistency [13] in that it takes advan-
tage of synchronization properties of the application. The
key observation is that ensuring that no thread enters a stale
fragment can be separated from the actual removal of the
fragment from the cache. The first step can be done atomi-
cally with respect to threads in the code cache by unlinking
the target fragments and removing them from any indirect
branch lookup table(s). Our unlinking operation is a single
write made atomic by using the lock prefix [18, vol. 3]
when the target crosses cache line boundaries. The actual
deletion of the fragments can be delayed until a safe point
when each thread in question has left the code cache at least
once and therefore cannot be inside of a stale fragment.

Non-precise flushing still requires synchronization with
each thread, but for the unlinking stage this only needs to
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ensure that each target thread is not accessing link data
structures. Since threads spend most of their time in the
code cache, in the common case no synchronization is re-
quired. For thread-shared caches, all threads must by syn-
chronized simultaneously before acting on the target frag-
ments to prevent re-linking of invalidated fragments, while
thread-private caches can be dealt with one thread at a time.
Once the target thread(s) are at a safe point (either in the
cache or at a runtime system wait point), the flusher checks
whether they have any fragments in the flush region (Sec-
tion 3.5), and if so, it unlinks them and removes them from
the hashtable, adding them to a queue of to-be-deleted frag-
ments. As each thread in the code cache exits, it checks
the queue and if it is the last thread out performs the actual
deletion of the fragments. Once a thread leaves it is free to
re-enter, as stale fragments are unreachable once exited.

Non-precise flushing prevents any new execution of stale
code, leaving only the problem of handling a thread cur-
rently inside of a stale fragment. Since DynamoRIO’s frag-
ments only contain loops via self-links, an unlinked inval-
idated fragment body will be executed at most once. Here
we turn to our relaxed consistency model, where we assume
that the thread modifying the code is properly synchronized
with the thread executing the code. By terminating frag-
ments at application synchronization operations, we ensure
that any execution of stale code can only occur if there was
a race condition that allowed it natively as well. Our re-
laxed model ensures sequential consistency when consider-
ing data or considering code independently, but weak con-
sistency when considering all of memory. Code writes will
never be seen out of order, and data writes are not affected at
all — the only potential re-ordering with respect to sequen-
tial consistency is between a data write and a code write.

This relaxation matches the limitations of our sandbox-
ing scheme (Section 3.3), which employs a check at the top
of each fragment, rather than unlinking, to bound the stale
code window to a single fragment body. If we could identify
all application synchronization operations and never build
fragments across them, neither our consistency model re-
laxation nor our sandboxing method would break any ap-
plication in a way that could not occur natively. For syn-
chronizing more than two threads, an explicitly atomic op-
eration that locks the memory bus (using the lock prefix or
the xchg instruction) is required. We break all of our frag-
ments at such instructions, as well as at loops and system
calls, which are also frequent components of synchroniza-
tion primitives. The performance impact of these fragment
barriers is negligible on our benchmarks.

However, a condition variable can be used without ex-
plicit synchronization using implicitly atomic single-word
single-cache-line reads and writes, and we cannot afford
to break fragments on every memory access on the chance
that it might be a condition variable. Thus, theoretically, a

pathological case that breaks our consistency algorithm can
be constructed if a code path that reads a condition vari-
able prior to jumping to modifiable code is executed fre-
quently enough to be completely inlined into a single trace.
It is extremely unlikely that synchronization code employed
prior to entering dynamically generated code will occupy
the same memory region as the generated code itself, so
breaking traces at transitions between compiled code mod-
ules and generated code regions further narrows this already
tiny window in which stale code can be executed. We have
not encountered any instances of this violation of our con-
sistency algorithm.

4 Code Cache Capacity

When executing a single application in isolation, there
may be no reason to limit the code cache size. However,
when executing many programs under a code caching sys-
tem simultaneously, or with significant cache fragmentation
from consistency invalidations, memory usage can become
problematic, causing thrashing and performance degrada-
tion. We can reduce memory usage significantly by im-
posing a bound on the code cache size, but such bounds
come with their own performance cost in capacity misses.
To achieve the best space and time tradeoff, two problems
must be solved: how to set an upper limit on the cache size,
and how to choose which fragments to evict when that limit
is reached. Unlike a hardware cache, a software code cache
can be adaptively sized for each application, and re-sized as
an application moves through different phases.

4.1 Thread-Private Versus Shared

A significant design decision affecting cache bounding
is how caches are shared among threads. The code cache
corresponds to application code, which is shared by every
thread in the address space. A runtime system must choose
whether its cache will be similarly shared, or whether each
thread will have its own private code cache. Thread-private
caches have a number of attractive advantages over thread-
shared caches, including simple and efficient cache man-
agement, no synchronization, and absolute addresses as
thread-local scratch space (otherwise a register must be
stolen). The only disadvantage is the space and time of
duplicating fragments that are shared by multiple threads,
although once fragments are duplicated they can be special-
ized per thread, facilitating thread-specific optimization or
instrumentation.

Thread-shared caches have many disadvantages in ef-
ficiency and complexity. Deleting a fragment from the
cache requires ensuring that no threads are executing in-
side that fragment. The brute force approach of suspending
all threads will ensure there are no race conditions, but is
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Basic blocks Traces
Benchmark Thrds shared thrds

frag shared thrds
frag

SPECJVM 10 18.0% 3.0 9.5% 2.2

excel 4 0.8% 2.9 0.2% 2.1
photoshp 10 1.2% 4.3 1.0% 3.8

ba
tc

h

powerpnt 5 1.0% 2.8 0.1% 2.2
winword 4 0.9% 2.8 0.1% 2.1

excel 10 8.4% 3.5 2.5% 3.2
photoshp 17 4.5% 2.3 1.7% 2.1
powerpnt 7 8.0% 2.2 10.9% 2.0

in
te

ra
ct

iv
e

winword 7 9.8% 4.1 3.3% 2.9

Table 3. Fragment sharing across threads.
Our desktop batch scenarios are compared to
interactive use, which creates more threads.
Thrds is the number of threads ever created;
shared is the percentage of fragments exe-
cuted by more than one thread; and thrds

frag
is the average number of threads executing
each shared fragment.

costly. Another key operation, resizing the indirect branch
lookup hashtable, requires adding synchronization to the
performance-critical in-cache lookup routine. Even build-
ing traces needs extra synchronization or private copies of
each component block in a trace-in-progress to ensure cor-
rectness.

To quantify the comparison between thread-shared and
thread-private caches, we must know how much code is
shared among threads. Naturally, it depends on the appli-
cation: in a web server, many threads run the same code,
while in a desktop application, threads typically perform
distinct tasks. Table 3 shows the percentage of code frag-
ments that are used by more than one thread in our mul-
tithreaded benchmarks. Even in interactive desktop appli-
cations there is a remarkable lack of shared code, which
matches previous results [22] where desktop applications
were found to have few instructions executed in any thread
other than the primary thread. These results drove our de-
sign decision to use thread-private caches in DynamoRIO.

4.2 Eviction Policy

Whatever limit is placed on the size of the code cache,
a policy is needed to decide which fragments to evict to
make room for new fragments once the size limit is reached.
Hardware caches typically use a least-recently-used (LRU)
eviction policy, but even the minimal profiling needed to
calculate the LRU metric is too expensive to use in soft-
ware: a single memory store at the top of each fragment
incurs an average performance impact of nearly eight per-
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Figure 4. Our FIFO fragment eviction policy,
which treats the cache as a circular buffer.
A new fragment displaces enough old frag-
ments at the current head to make room. The
figure also shows fragments marked as either
regenerated or new, which drives our adap-
tive working-set-size algorithm (Section 4.4.)

cent on our SPEC CPU suite. DynamoRIO uses a least-
recently-created, or first-in-first-out (FIFO), eviction policy,
which allows it to treat the code cache as a circular buffer
and avoid any profiling overhead from trying to identify
infrequently-used fragments. Furthermore, a FIFO policy
has been shown to be comparable to other policies such as
LRU or even least-frequently-used (LFU) in terms of miss
rate [17].

Figure 4 illustrates our FIFO replacement. To make
room for a new fragment when the cache is full, one or more
contiguous fragments at the current point in the FIFO are
deleted. If there is empty space after deleting fragments to
make room for a new fragment (due to differences in frag-
ment size), that space will be used when the next fragment
is added — that is, the FIFO pointer points at the start of the
empty space. By deleting adjacent fragments and moving in
a sequential, FIFO order, fragmentation of the cache from
capacity eviction is avoided.

Two remaining sources of cache fragmentation are dele-
tion of trace heads as each trace is built (since the trace re-
places the basic block at the trace entry point) and cache
consistency evictions. Both of these cause holes in arbitrary
locations in the cache. To combat these types of fragmenta-
tion, we use empty slot promotion [3, p. 161–163]. When a
fragment is deleted from the cache for a non-capacity rea-
son, the resulting empty slot is promoted to the front of the
FIFO list and will be filled with the next fragment added to
the cache. To support empty slot promotion we must use
a level of indirection to separate the FIFO from the actual

7
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Figure 5. Performance impact of shrinking the basic block cache and the trace cache to one-half and
one-eighth of their largest sizes, versus unlimited cache sizes.

cache address order.
Examining only capacity, batch eviction of contiguous

code cache space is more efficient than single-fragment
deletion because it better amortizes costs [16]. However,
consistency evictions target scattered locations in the cache,
and cannot be easily batched. Furthermore, they can thwart
batch allocation units that must be de-allocated together
to achieve any benefit. Consistency events are common
enough in modern applications that their impact must be
designed for.

4.3 Cache Size Effects

To study the performance effects of limited cache size,
we imposed a hard upper bound equal to a fraction of the
space used by each benchmark in an unbounded cache. Per-
formance can be significantly impacted by an order of mag-
nitude or more (Figure 5). While a different policy than our
FIFO that uses profiling (ignoring the overhead of such pro-
filing that makes it unsuitable for runtime use), such as LRU
or LFU, may perform slightly better by keeping valuable
fragments longer, the extreme slowdowns exhibited at low
cache sizes will be present regardless of the replacement
policy due to capacity misses from not fitting the working
set of the application in the cache.

The results indicate that the trace cache is much more
important than the basic block cache, as expected. Evicting
a hot trace is more detrimental than losing a basic block, as
it takes much longer to rebuild the trace. Restricting both
caches to one-eighth of their natural sizes results in pro-
hibitive slowdowns for several of the benchmarks, due to

thrashing. Shrinking the caches affects each application dif-
ferently because of differing native behavior. Some of these
applications execute little code beyond the performance-
critical kernel of the benchmark, and cannot handle limited
space constraints. Benchmarks that adapt well are those that
contain much initialization or other code that adds to the to-
tal cache usage but is not performance-critical. Thus, maxi-
mum unbounded cache usage is not a good metric to use for
sizing the cache.

4.4 Adaptive Working-Set-Size Detection

We developed a novel scheme for automatically adapting
the code cache to the current working set size of the applica-
tion, to reduce memory usage but avoid thrashing. Not only
are user-supplied cache size requirements eliminated, but
our dynamically adjusted limit supports applications with
phased behavior that will not work well with any hardcoded
limit. The insight of our algorithm is that non-performance-
critical code such as initialization sequences are good can-
didates for eviction since they may only be used once. Op-
erating at runtime, we do not have the luxury of examining
future application behavior or of performing extensive pro-
filing — we require an incremental, low-overhead, reactive
algorithm. Our solution is a simple method for determin-
ing when to resize a cache, and could be applied either to a
simple cache or to each component in a generational cache.

Our sizing technique is driven by the ratio of regenerated
fragments to replaced fragments. We begin with a small
cache, and once it fills up, we evict old fragments (using
our FIFO policy) to make room for new ones. The num-
ber of fragments evicted is the replaced portion of the ratio.
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Figure 6. Performance impact of our adaptive working set with varying ratio thresholds: 10 regener-
ated / 50 replaced, 20/50, 30/50, 40/50, and 45/50, versus an unbounded cache.

We record in a hashtable every fragment that we remove
from the cache. When we add a new fragment, we check to
see whether it was previously in the cache (a capacity miss,
as opposed to a cold miss). For efficiency we check only
the starting address for regeneration, potentially consider-
ing two traces with different tails to be identical. If the new
fragment was previously present, we increment our count of
regenerated fragments. Figure 4 illustrates the marking of
fragments as new or regenerated. Only if a significant por-
tion of new fragments are regenerated should the cache be
larger than it is, in which case we double its size. The peri-
odic ratio checks allow us to adapt to program behavior only
when it changes — our checks are in runtime system code
and incur no cost while execution is in the code cache. If
the working set changes, we will replace the old fragments
with new fragments.

To evaluate how the ratio threshold affects performance,
we kept the replaced fragments parameter constant at 50
and varied the regenerated component from 10 up to 45.
As Figure 6 shows, most of our benchmarks see little effect
at the smaller parameters, with a harmonic mean of only a
3.5% slowdown at 10 regenerated fragments. The impact of
higher ratios is significant in some cases, due to the over-
head of freeing fragments and of regenerating those that are
re-used but deleted, with an average 13.4% slowdown at 45
regenerated fragments. The applications most affected are
those that execute large amounts of code with little reuse
that will not amortize extra time spent in DynamoRIO (gcc
and our desktop benchmarks) as well as those that are al-
ready experiencing code cache churn due to cache consis-

tency flushes (SPECJVM), where restricting cache expan-
sion exacerbates DynamoRIO’s performance problems with
such dynamically generated code.

The resulting cache sizes from these parameters are
shown in Table 4. The most striking result is how much
more resistant the trace cache is to shrinking than the ba-
sic block cache: for many of the benchmarks, the trace
cache quickly reaches the core working set size and remains
the same with successively higher regeneration thresholds.
Conversely, since re-used code is promoted to the trace
cache, the basic block cache can be shrunken significantly,
an average of one-third and one-half at our two lowest
thresholds, and up to 97% (for excel and winword) at our
highest threshold. There is a tradeoff between memory and
performance, and the lower ratio thresholds should typically
be chosen, since they achieve sizable memory reductions at
low performance cost.

We next explored the frequency for resize checks by ex-
ecuting our benchmark suite with a constant ratio but vary-
ing the replaced-fragment denominator. The results in Fig-
ure 7 show that while less frequent checks do affect a few
benchmarks negatively, overall there is no significant im-
pact. Checking too frequently may be too easily influenced
by temporary spikes, and rarely not reactive enough. Thus,
we chose our value of 50 from the center of this range. Fur-
ther exploring the parameter space is left as future work.

Another area of future work for our algorithm is to shrink
the cache when the working set shrinks, which is much
more difficult to detect than when it grows. Explicit appli-
cation actions like unloading libraries that imply reductions
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Figure 7. Performance impact of our adaptive working set with varying resize check frequency: 15
regenerated / 25 replaced, 30/50, 60/100, and 120/200, versus an unbounded cache.

Parameters: ∞ 10 20 30 40 45
Benchmark Basic block cache (KB)
SPECFP 77 67 66 65 58 58
SPECINT 198 157 149 137 124 111
SPECJVM 1512 896 734 728 665 677
excel 2618 1632 1312 1024 64 64
photoshp 5521 3360 1856 1472 1184 1216
powerpnt 4242 2592 1632 992 736 480
winword 3135 2240 1664 1248 1024 64
ave impact — -33% -49% -58% -69% -76%
Benchmark Trace cache (KB)
SPECFP 127 109 109 109 109 105
SPECINT 350 305 307 306 300 292
SPECJVM 889 655 659 647 634 571
excel 608 430 416 404 366 347
photoshp 3371 2336 2336 2304 2114 1992
powerpnt 2259 1520 1536 1504 1487 1440
winword 1126 915 909 896 832 640
ave impact — -23% -23% -24% -27% -32%

Table 4. Code cache sizes when using our
adaptive working set algorithm with regen-
eration thresholds of 10, 20, 30, 40, and
45, per 50 replaced fragments. The main
thread’s cache sizes are given for multi-
threaded benchmarks, and the average for
suites.

in code are the best candidates for driving cache shrinkage.
Efficiently identifying whether the application is using the
full code cache or not is challenging. Detecting true idle pe-
riods requires periodic interrupts, which are problematic on
Windows without either a dedicated runtime system thread
or a runtime system component that lives in kernel space.

5 Related Work

Many code caching techniques were pioneered in in-
struction set emulators [8] and whole-system simula-
tors [36]. Software code caches are also coupled with hard-
ware support for ISA compatibility [14, 10, 11] and used
to virtualize hardware [4, 9]. Recent runtime tool platforms
have turned to code caches to avoid the transparency and
granularity limitations of traditional methods of inserting
trampolines directly into application code [30, 26, 19]. Dy-
namic translation systems use code caches to reduce trans-
lation overhead [29, 37, 7], while dynamic optimizers at-
tempt to exceed native performance by placing optimized
versions of application code into code caches [2, 5]. A final
category of systems with code caches are just-in-time (JIT)
compilers that store generated code [1].

5.1 Code Cache Consistency

Any system with a software code cache is subject to the
problem of cache consistency. Most RISC architectures re-
quire an explicit instruction cache flush request by the ap-
plication to correctly execute modified code, usually in the
form of a special instruction [20]. Systems like Shade [8],
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Embra [36], Dynamo [2], and Strata [30] watch for this in-
struction and invalidate their entire code cache upon seeing
it. DELI [11] states that it handles self-modifying code, but
gives no details on how this is achieved.

The IA-32 architecture requires no special action from
applications to execute modified code, making it more
challenging to detect code changes. Due to this diffi-
culty, and because some programs do not require the fea-
ture, many systems targeting IA-32 do not handle modified
code [5, 7, 30, 31, 19]. Other systems that target IA-32
must, like DynamoRIO, turn to page protection. Daisy [14]
uses hardware-assisted page protection, making use of a
page table bit that is inaccessible to the application to in-
dicate whether a page has been modified. When a write is
detected on a code page, that whole page is invalidated in
the code cache. Similarly, Crusoe [10] uses page protec-
tion, with hardware assistance in the form of finer-grained
protection regions than IA-32 pages. Although they have
an IA-32 emulator, they augment their page protection with
similar mechanisms to our sandboxing for detecting self-
modifying code on writable pages [10]. VMWare [4] and
Connectix [9] purportedly use page protection combined
with sandboxing as well, though details are not available.
Since most of these systems execute underneath the oper-
ating system, they avoid the problems of multiple threads.
The exception is VMWare’s multiprocessor support, which
should have similar consistency problems to ours, but for
which no technical information is available. Ours is the
only software code cache that we know of that has tackled
the combination of multiple application threads and cache
consistency on IA-32.

5.2 Code Cache Capacity

There is little prior work on optimally sizing software
code caches. Nearly every system known to us (the excep-
tions are virtual machines [4, 9]) sizes its cache generously
and assumes that limit will rarely be reached. Furthermore,
cache management is usually limited to flushing the entire
cache, or splitting it into two sections that are alternately
flushed [5], although Valgrind [31] performs FIFO single-
fragment replacement when its cache fills up. For many of
these systems, the cache is an optimization that, while crit-
ical for performance, is not critical to the workings of the
system — they can fall back on their emulation or transla-
tion core. And for systems whose goal is performance, their
benchmark targets (like SPEC CPU [35]) execute relatively
small amounts of code.

Cache eviction studies have concluded that a FIFO pol-
icy works as well as any other policy in terms of miss
rate, including LFU or LRU [17]. The conclusion of later
work [16] is that the best scheme is to divide the cache into
eight or so units, each flushed in its entirety. Multi-fragment

deletion can certainly be cheaper than single-fragment dele-
tion. However, these cache studies do not take into account
cache consistency events in real systems, which could dras-
tically change all of their equations by increasing the fre-
quency of evictions, and prevent forward progress when a
flush unit contains both an instruction writing code and its
target.

Dynamo [2] attempted to identify working set changes
by pre-emptively flushing its cache when fragment creation
rates rose significantly. Other work on identifying applica-
tion working sets has focused on data references, attempt-
ing to improve prefetching and cache locality [6, 32], or
on reducing windows of simulation while still capturing
whole-program behavior [33]. Many of these schemes are
computation-intensive and require post-processing, mak-
ing them un-realizable in a runtime system that needs ef-
ficient, incremental detection. Some schemes do operate
completely at runtime, but require hardware support [12].

6 Conclusions

While code caching technology is relatively mature, lit-
tle work has been done on maintaining cache consistency in
the presence of multiple threads or on sizing code caches.
These are two important milestones toward deployment of
dynamic translators and optimizers on production systems
running large, modern, complex applications. This paper
contributes in both of these areas, with an efficient scheme
for keeping a software code cache consistent across mul-
tiple threads without hardware support, as well as a novel
runtime algorithm for dynamically bounding code cache
size to match the current working set of the application.
We evaluate these algorithms in DynamoRIO, a real code
caching system running on stock IA-32 hardware under
both Windows and Linux, on modern applications with dy-
namic behavior, including dynamically-loaded, generated,
and even modified code.

While our cache consistency algorithm works well with
both thread-private and thread-shared caches, our cache siz-
ing algorithm takes advantage of the efficiency of thread-
private single-fragment deletion. We leave efficient sizing
of thread-shared caches as future work. A second area of
future work for our sizing scheme is extending it to reduce
cache sizes during idle periods.
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