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Abstract
Dynamic binary translation serves as a core technology that
enables a wide range of important tools such as profiling,
bug detection, program analysis, and security. Many of the
target applications often include large amounts of dynam-
ically generated code, which poses a special performance
challenge in maintaining consistency between the source ap-
plication and the translated application. This paper intro-
duces two approaches for optimizing binary translation of
JITs and other dynamic code generators. First we present a
system of efficient source code annotations that allow de-
velopers to demarcate dynamic code regions and identify
code changes within those regions. The second technique
avoids the annotation and source code requirements by au-
tomatically inferring the presence of a JIT and instrument-
ing its write instructions with translation consistency oper-
ations. We implemented these techniques in DynamoRIO
and demonstrate performance improvements over the state-
of-the-art DBT systems on JIT applications as high as 7.3×
over base DynamoRIO and Pin.

1. Introduction
One of the primary goals of dynamic binary translation
(DBT) is to minimize runtime overhead while providing
accurate and flexible introspection and instrumentation of
the target application. Many optimizations have been de-
veloped, including translating the target application into an
internal code cache such that each fragment of the trans-
lated application is only generated once—the first time it is
executed. DBT tools also commonly implement advanced
optimizations such as tracing and in-cache resolution of in-
direct branches. These enhancements focus on DBT per-
formance for applications comprised exclusively of stati-
cally generated code—i.e., compiled binary executables and
libraries—which historically includes the vast majority of
popular applications.

In recent years, however, the software industry has be-
gun a significant transition toward dynamically generated
code, especially JIT engines for script interpreters. Dynam-
ically generated code (DGC) presents a special challenge to
the efficiency of a DBT tool. To maintain consistency be-
tween the original application and its translation in the code
cache, a DBT tool must (1) detect modifications to the orig-
inal generated code and (2) reconstruct the corresponding
portion of the translated application. This creates tremen-
dous additional overhead, reducing today’s DBT platform

performance by an order of magnitude for applications that
dynamically generate substantial amounts of code. For ex-
ample, the overhead of DynamoRIO [2] for the SPEC CPU
2006 benchmark suite [28] on 64-bit Linux averages merely
12% (Section 6) but the Octane JavaScript benchmark suite
runs 4.4× slower in the Mozilla Ion JIT and 15× slower in
the Chrome V8 JIT on the same platform. Similarly, the av-
erage overhead of Pin [17] is 21% [5] for SPEC CPU 2006,
but Octane runs 8× slower in Ion and 18× slower in V8.

The main reason for the extreme slowdown caused by
DGC is that the DBT tool cannot easily detect when and
where generated code is modified. While most RISC archi-
tectures require an explicit instruction cache flush request by
the application to correctly execute modified code [13], this
paper focuses on the IA-32 and AMD64 platforms where
the hardware keeps the instruction and data caches consis-
tent and no explicit action from the application is required.
Special measures must be taken by the DBT tool to detect
code changes, as any memory write could potentially modify
code. Since performance constraints do not allow instrumen-
tation of every write in the entire application, the common
approach is to artificially set all executable pages to read-
only, and invalidate all code translated from a page when a
fault occurs. These factors greatly increase the overhead of
the DBT tool when an application frequently writes to pages
containing code.

This paper presents DBT optimization techniques ap-
plied to DynamoRIO for the special case of dynamically
generated code. Our augmented DynamoRIO significantly
outperforms the state-of-the-art DBT systems on JIT pro-
grams. For the Octane JavaScript benchmark running in the
Mozilla JavaScript engine, we achieve 2× speedup over Dy-
namoRIO and 3.7× speedup over Pin, and for Octane in the
Chrome V8 JavaScript engine we achieve 6.3× speedup over
DynamoRIO and 7.3× speedup over Pin.

1.1 Motivation for Improving DBT of DGC
Security [7, 15, 27] and bug detection [4] applications of
DBT are especially important for dynamically generated
code, first because it is becoming more prevalent in popular
applications. For example, all of the Microsoft Office appli-
cations use the JScript9 JavaScript engine to render built-in
web browser components. Another common example is the
Adobe PDF Reader, which renders the application frame in
a Flash component and built-in cloud account browsers with
Flash and JScript9. Both Microsoft and Google host pop-
ular office suites online, where the majority of application
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functionality executes in the web browser’s JavaScript en-
gine. Since these JIT-intensive applications and components
are most commonly used to access Internet resources, ev-
ery security vulnerability becomes a publicly accessible at-
tack surface, and every bug becomes a security vulnerability.
Furthermore, the dynamic nature of generated code makes it
vulnerable to a wider range of attacks, since some effective
security measures such as W

⊕
X [19] are not available.

Program analysis applications of DBT are also especially
relevant to dynamically generated code because:

1. a wide range of popular and important software systems
now include large DGC components;

2. the complexity of debugging DGC engines is much
higher than for statically compiled code;

3. the majority of conventional analysis tools operate on
source code, which for DGC only exists in the abstract
form of internal data structures; and

4. performance is the primary goal of most dynamic code
generators, making them ideal targets for the deep profil-
ing and memory analysis that DBT excels at.

Effective program analysis must be efficient enough for reg-
ular use, which is not possible given the current approach to
translation consistency in popular DBT platforms.

1.2 Optimization Techniques
This paper introduces two optimization approaches and
demonstrates in the context of DynamoRIO that both can
significantly improve performance of DBT for the JavaScript
JIT engines V8 and Ion, achieving under 3× the native exe-
cution time on average. The simpler of these two approaches
is to augment the target application with special source code
annotations that are compiled into the binary and subse-
quently translated into DBT actions by the DBT interpreter.
The specific annotations used are described in Section 3.1.

While the annotations have a very small impact on the
native performance of the target application, the obvious
disadvantage to this approach is that it requires source code
and a special build of the target application. In addition,
many applications are not trivial to annotate correctly, and
annotation errors have the potential to cause the application
to behave incorrectly or crash under DBT.

The second approach infers JIT code regions and instru-
ments all writes targeting those regions to use a parallel
memory mapping that has writable permission. The instru-
mentation also flushes fragments of the translated applica-
tion that are invalidated by the JIT write. While this approach
is less intrusive in the user’s toolchain, it requires the use of
additional address space and is more complex to implement.

1.3 Contributions
This paper makes the following contributions:

• An Efficient Scheme of Binary Annotations: We present
a novel source code annotation scheme that, when com-
piled into binary annotations in a native x86 target appli-
cation (1) avoids overhead from annotation arguments,

yet (2) supports the full calling convention with efficient
annotation detection by DBT tools.

• Annotation-Based Support for Efficient Caching of
Dynamically Generated Code: We present a system of
annotations that can be used by JIT engines to enable
DBT to efficiently support dynamically generated code.

• Inference-Based Support for Efficient Caching of Dy-
namically Generated Code: We present an inference-
based approach that can support fine granularity detec-
tion of modifications to dynamically generated code and
optimizations that avoid the overheads of page faults in
common cases.

2. Background and Related Work
The structure of a Dynamic Binary Translator is optimized
for its performance on statically compiled code, which com-
prises the vast majority of target applications. This structure
makes its performance especially weak for dynamically gen-
erated code. In its most naı̈ve form, dynamic binary trans-
lation can be implemented as a pure interpreter, applying
instrumentation each time a relevant program point is en-
countered. This approach would have identical overhead for
both static and dynamic code. To optimize for the common
case, DBT platforms typically translate fragments of the tar-
get application on demand into a memory-resident cache.
This section begins with an implementation overview of Dy-
namoRIO [2], highlighting the optimization details that ben-
efit the common case but work against dynamically gener-
ated code. The remainder of the section outlines the strate-
gies for handling DGC used by popular DBT platforms.

2.1 DynamoRIO
DynamoRIO initially translates each basic block of the target
application on demand into the code cache, linking the trans-
lated blocks in parallel with their original counterparts to
replicate the original control flow within the cache. As new
blocks of the target application are executed, the code cache
is incrementally populated until eventually the application
runs entirely within the cached copy. An indirect branch in
the control flow may have many targets, which are specified
by an address value in the memory space of the application.
Since the data flow of the target application is identical to a
native run, the address of the branch target always refers to
the original application’s memory—untranslated code out-
side the code cache. To prevent the execution from return-
ing to the original application, the branch is redirected to a
lookup routine within the cache that finds the translated code
fragment corresponding to the branch target and jumps to it.
Figure 1 depicts the translation and linking process.

Traces in DynamoRIO To improve performance for hot
paths in the application, DynamoRIO instruments each in-
direct branch target with an execution counter, and when
the count reaches a configurable threshold (by default 52),
the fragment is designated as the head of a trace. As execu-
tion continues, the trace is progressively extended using the
Next Executing Tail scheme. Indirect branches within a trace
are translated into the more efficient direct branches, which



A

B C

D

E

F

A
C
D
E

F
?

Application Code

foo() bar()

A

C

D

E

F

Indirect
Branch
Lookup

DynamoRIO Code Cache

BB
Cache

Trace
Cache

Figure 1: Overview of Dynamic Binary Translation. Blocks of ap-
plication code are dynamically translated into a code cache where
they are linked back together.

do not require a lookup routine, and direct branches are re-
moved by fusing the basic blocks of the trace into a single
straight-line code sequence.

VM Areas in DynamoRIO When the target application al-
locates memory, whether by mmap to load a module image
or by an allocation function such as malloc or any other
means, DynamoRIO creates an internal accounting structure
for that block of memory called a VM area. Executable code
in a VM area is associated with it by a list of code fragments,
which can be either basic blocks or traces. When a module
image is unloaded by the target application, the correspond-
ing VM area with its list of fragments is flushed accordingly.
Likewise, if the application removes executable permission
from a region of memory, the corresponding code fragments
must be flushed—even if the area becomes executable again,
changes to the code will not be known, and any obsolete
fragments will cause the application to behave incorrectly.
To detect changes to code in a VM area that is both writable
and executable, DynamoRIO artificially sets the page per-
mission to read-only [3]. When a page fault occurs in the
VM area, all of its code fragments are flushed. While it is
possible to identify the specific fragments that were changed
and flush them selectively, it would require special han-
dling of memory permissions to execute the write exclu-
sively of other threads, because even a momentary change
to the writable permission is global and could allow a con-
current thread to write undetected. This problem is one of the
root factors that makes naı̈ve handling of DGC inefficient, so
we refer to it throughout this paper as the concurrent writer
problem. In general, the minimum granularity of a dynamic
code change is one page of memory, because a write cannot
be executed exclusively within a virtual page. The optimiza-
tion in Section 5 introduces an alternative, more sophisti-
cated approach that eliminates the concurrent writer prob-
lem and enables finer granularity code changes.

DGC in DynamoRIO While this structure is very efficient
for module images loaded via mmap, it requires most dynam-
ically generated code fragments to be translated into the code
cache many times repeatedly. Consider the simple case of
a JIT engine generating a compiled function, executing the
function, then generating a second function in the same VM
area and executing it, and so on. The writing of each new
function requires all the existing functions to be invalidated
and retranslated. This process is especially cumbersome for
traces, which must be rebuilt after each VM area flush ac-
cording to the hottest paths identified by the instrumented
trace heads. While it is possible to simply disable tracing
for the JIT code areas, this yields very poor performance
in long-running benchmarks such as Octane. Since the JIT
compiles the hottest paths in the application’s JavaScript, the
JIT code areas are necessarily the hottest paths in the appli-
cation. Disabling traces improves the efficiency of the code
generation process, but in a full run of Octane costs 25% in
overall execution time because the code along the hot paths
is so much less efficient in CPU execution time.

The benchmark results in Section 6 indicate that DBT in
general performs much worse on Chrome’s V8 JavaScript
engine than on Mozilla’s Ion, even though V8 outperforms
Ion in a native run. This is caused by frequent writes to
small data areas, typically bit fields, scattered throughout the
generated code. Since these writes do not affect translated
code, DynamoRIO could theoretically execute the writes
without flushing the region. But this is prevented by the
risk of a concurrent write—and even if it were possible, it
would still be very expensive to determine whether the write
target overlaps any translated code fragment. The search
would be reasonably efficient if DynamoRIO were to keep
a sorted data structure of spans, but it does not because
that large and expensive structure would be of no value for
module image VM areas, which comprise the vast majority
of translated code. Therefore, without special optimization
for DGC, determining fragment overlap would require a
time-consuming search of the code fragment list for the
targeted VM area.

2.2 QEMU
When QEMU [1] translates code fragments from a page of
memory in the guest, one of two strategies is used to detect
code changes on the page. The first strategy is similar to
DynamoRIO, marking the page read-only and handling the
fault as if it were a write event. The second strategy relies on
the QEMU softmmu layer, which provides a software TLB
that effectively maps the guest page table to the host page
table. When the guest writes to a page of memory, the target
is translated through the softmmu layer to the corresponding
host page, and this translation point can be configured to
instead trap into QEMU for code change handling [18].

2.3 Pin
Pin [17] translates all code into traces. For any trace contain-
ing instructions that were dynamically generated, the head of
the trace is instrumented to check whether any of those in-
structions have changed [20]. When executable permission
is removed from a page containing DGC, all traces contain-



ing code fragments translated from the page are invalidated.
During periods of frequent code generation, this approach is
more efficient than instrumenting every store, because traces
will be executed much less frequently than stores. But the
cost increases dramatically while the JIT engine is dormant
and the generated traces are repeatedly executed, since the
instrumented checks rarely discover code changes and are
executed far more often than stores (assuming the generated
code is collectively hotter than the interpreted code, and that
the generated code does not itself generate code). Both Dy-
namoRIO and QEMU rely on detecting code changes at the
time of the write, leading to the concurrent writer problem,
but the Pin approach relies on detecting code changes at the
time the translated traces are executed. This makes it pos-
sible for Pin to selectively flush individual traces from the
code cache. The benchmark results in Section 6 show that
this approach outperforms region flushing for executions of
the Octane benchmark.

2.4 Valgrind
Valgrind [23] provides two methods for synchronizing its
code cache with dynamically generated code. The first is
similar to Pin, instrumenting every dynamically generated
basic block with a check for modified code. The second strat-
egy requires compiling the target application with a source
code annotation [26] that is translated into a code cache flush
event. While the latter approach is relatively efficient, it does
not significantly improve performance because the cost of
both methods is overwhelmed by the slowdown of Valgrind’s
translation of basic blocks through a three-value IR.

DynamoRIO implements some of the Valgrind anno-
tations for compatibility purposes. In addition, Section 4
presents a new annotation scheme that is much more effi-
cient than Valgrind’s. It also supports all popular compilers
on the Windows 32-bit and 64-bit platforms, including Mi-
crosoft Visual Studio, the Intel C++ Compiler and GCC.

2.5 Specialized Applications of Binary Translation
The Transmeta Code Morphing SoftwareTM [8] leverages
hardware support to synchronize with dynamic code in sev-
eral ways, including: (1) an approach like DynamoRIO’s,
but with sub-page write detection, (2) the technique now
used by Pin, (3) a similar approach which only revalidates
a DGC fragment after its containing write-protected region
has been written, (4) patching translated code on the basis of
recognized DGC patterns such as jump target substitution,
and (5) translating frequently modified code into translation
groups, which cache a history of recent translations for re-
curring DGC.

Librando [12] automatically diversifies the output of a JIT
compiler at runtime for increased security. Librando allows
the JIT to run natively, and detects JIT writes using the
same page protection scheme as DynamoRIO, additionally
minimizing overhead by validating each diversified basic
block using a hashcode of the instruction bytes.

A survey by Keppel [14] outlines a variety of techniques for
detecting self-modifying code in instruction-set simulation.

3. Annotation-Based Optimization
A simple approach to optimizing DynamoRIO for JIT code
is to add source code annotations to the target application
that notify the DBT about changes in generated code. Sec-
tion 4 describes the design and implementation of our under-
lying annotation scheme. This section introduce ANNOTA-
TIONDR, an extension of ORIGINALDR that supports spe-
cific event annotations for JIT optimization.

3.1 New Annotations Identifying Code Changes
In ANNOTATIONDR, we introduce three annotations to fa-
cilitate handling DGC in DBT systems:

1. ManageCodeArea(address, size): disables the de-
fault method of detecting code changes for the specified
region of memory until the area is unmanaged.

2. UnmanageCodeArea(address, size): re-enables the
default method of detecting code changes for the spec-
ified region of memory.

3. FlushFragments(address, size): flush all fragments
of the translated application corresponding to the speci-
fied region of the target application.

These annotations indicate the allocation and deallocation of
JIT code regions and notify ANNOTATIONDR of all writes
to the JIT code VM areas. We refer to JIT code regions as
managed code regions. The default write detection schemes
are disabled for managed code regions in ANNOTATIONDR,
because every change to JIT code is explicitly annotated.

Given a correctly annotated application, the remaining
challenge is minimizing redundant code fragment flushes
by providing a finer granularity flush operation. ANNOTA-
TIONDR introduces two improvements, described below.

3.2 VM Area Isolation
Recall that by default, ORIGINALDR invalidates cache code
at the granularity of VM areas. A substantial performance
improvement can be made in ANNOTATIONDR’s handling
of DGC by simply reducing the size of the VM areas con-
taining DGC to single pages. Annotations indicate which
memory allocations of the target application contain JIT
code, so the corresponding VM areas can either be split
into single pages upon instantiation, or lazily as code in
those regions is invalidated. The annotation event for JIT
writes allows ANNOTATIONDR to avoid the expensive page
faults required by the default strategy for detecting dynamic
code changes, and more importantly alleviates the concur-
rent writer problem. Together these improvements reduce
the execution time to 3.7× native execution time on the Oc-
tane JavaScript benchmark [6] for V8 [10] and 2.6× for
Ion [21] (see Section 6).

3.3 Selective Fragment Removal
Further improvement requires identifying, for each JIT
write, which specific code fragments should be invalidated
and selectively removing them from the code cache. For
small writes such as a jump target change, it is alternatively
possible to patch the corresponding fragments in the code
cache instead of removing them. However, this would add



significant complexity to the interface used to build tools
with ANNOTATIONDR. Tool authors would need to spend
effort handling the case of instrumented code being directly
patched, including jump targets changing, which can drasti-
cally affect security or sandboxing tools. By instead simply
invalidating fragments corresponding to the modified code
we keep the tool interface consistent. The tradeoff here be-
tween complexity and performance may be worthwhile for
specific tools and could be explored in future work.

The invalidation process is made more complicated by
several implementation factors of ORIGINALDR: (1) the
constituent basic blocks of each trace are kept separately
from the trace itself, (2) traces typically do not consist of
code that was contiguous in the original binary, and (3) a
single basic block in the target application may be trans-
lated into several overlapping basic blocks, each having a
different entry point and all having the same exit. As dis-
cussed at the end of Section 2.1, this requires an efficient
data structure for sorted spans. The conventional data struc-
ture would be a red-black interval tree, but given the large
quantity of DGC fragments, each traversal would likely in-
cur at least a dozen branch mispredictions, and probably sev-
eral CPU cache misses as well. Instead, ANNOTATIONDR
stores the DGC fragment spans in a hashtable in which each
bucket represents 64 bytes of a JIT code VM area. When a
DGC fragment is translated into the code cache, its span is
added to each hashtable bucket it overlaps. To lookup frag-
ments overlapping a JIT write, the hashtable is first consulted
to obtain a list of buckets whose 64-byte span is touched
by the write. Since it is common for JIT engines to inter-
sperse the generated code with small data fields, ANNOTA-
TIONDR next checks the fragments in each bucket for over-
lap, such that only fragments specifically overlapping the
written bytes will be flushed. A single hashtable bucket can
in rare cases contain up to 32 fragments (for example, in a
field of two-byte trampolines), so to minimize CPU cache
misses while traversing a bucket’s chain, each link in the
chain holds 3 fragment spans. Figure 2 illustrates the distri-
bution of code fragments into the hashtable buckets.

High Fan-in One challenge inadvertently raised by this
optimization is that the removal of incoming direct branches
can become a significant bottleneck. In statically compiled
code, direct branches are rarely removed, so ORIGINALDR
optimizes for space by using a singly-linked list to identify
all direct branches targeting a code fragment (Figure 3). But
in a run of Octane’s Mandreel benchmark, in which V8 gen-
erates up to 150,000 direct branches that all target the same
basic block, these branches are often removed during exe-
cution as stale code fragments are overwritten. The corre-
sponding fragment removal requires an O(n) traversal of a
potentially long branch list, and in the case of Mandreel this
consumes the entire speedup of selective fragment removal.

This slowdown can be alleviated by observing that the
majority of high fan-in branches come from basic blocks
that are no longer in use by the JIT, but have not been over-
written or deallocated (i.e., dangling fragments). For this
reason, the slowdown does not occur in ANNOTATIONDR
with VM area isolation, because the coarser flushing of
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Figure 3: The singly-linked list of incoming branches requires
an O(n) traversal to remove a fragment, resulting in significant
overhead for high fan-in basic blocks that are common in JIT code.

whole pages randomly eliminates the majority of incom-
ing branches from dangling fragments. ANNOTATIONDR
simulates this effect by limiting the number of incoming di-
rect branches to 4096, removing the fragment containing the
oldest incoming branch when the limit would otherwise be
exceeded. In some cases the removed fragments may still be
in use, requiring retranslation, but in general the removed
fragments are never executed again. This heuristic is not
necessarily optimal for all JIT scenarios, so to handle an ex-
treme case it is possible to selectively substitute the linked
list with a hashtable of incoming direct branches.

4. Annotation Implementation
This section describes how our annotations are implemented.
Beyond our primary use of annotations for identifying DGC,
there are many other use cases for annotations in a DBT plat-
form. Existing annotations are often for avoiding false posi-



tives in tools such as memory usage checkers. For example,
Valgrind provides several dozen annotations with such func-
tionality as printing to the Valgrind log, or marking variables
in the target application as having defined values in cases
where the Memcheck [26] tool’s analysis would otherwise
report an undefined-use error.

4.1 Binary Annotation Scheme
Source code annotations in the target application are com-
piled into binary annotations which can be translated by the
DBT tool into event callbacks at runtime. A binary anno-
tation is a short code sequence that has the effect of a nop
during native executions of the application, but can be defini-
tively recognized by the DBT interpreter. Annotations must
support passing argument values to the DBT tool and return-
ing a return value to the application. These argument values
are constructed using normal compiled code. There are three
requirements for implementing effective annotations:

1. The annotation must create minimal overhead during na-
tive execution of the target application, such that annota-
tions can be included in the release build.

2. Compiler optimizations can potentially modify or even
remove annotations, so they must be defined in such a
way that the DBT tool can recognize it after optimiza-
tions have transformed it.

3. The annotations must be distinctively recognizable by the
DBT tool, such that annotation detection does not create
overhead for code that does not have annotations.

401972 jmp 401985 # f i r s t jump
401974 mov 0 x202688 ,% r a x # name base
40197 c bsf 0 x f f f f f f f f f f f f f f 9 8 ,% r a x # name offset
401985 jmp 401996 # second jump
401987 mov $0x2 ,%esi # argument 2
40198 c mov $0x1 ,%edi # argument 1
401991 c a l l q 4024 f2 # a n n o t a t i o n f u n c t i o n call

Listing 1: Annotation macro for 64-bit GCC. The first jump
operand is always 0x11 bytes, allowing the DBT tool to use
it as a quick detection filter. The subsequent mov and bsf
encode a pointer to the annotation name in the text section.

Our basic approach to satisfying Requirement 1 is to pre-
fix the annotation with a jump beyond the annotation, such
that the body of the annotations is dead code—skipped over
in a native execution (Listing 1). Implementing the annota-
tion using inline assembly meets all three requirements, as
(1) the jump over the annotation has near zero runtime over-
head, (2) inline assembly instructions are never transformed
by compiler optimizations (even whole-program optimiza-
tions), and (3) the exact byte sequence can be precisely con-
trolled to minimize ambiguity with application code.

The developer invokes the annotation using a macro,
which accepts ordinary arguments from the domain of ap-
plication variables, constants and functions, e.g.:

MANAGE_CODE_AREA(start, compute_area_size());

In this example, even if the compiler inlines the entire
function body of compute area size() into the argument
preparation, it would all be skipped during native execution.

4.2 Annotation Discussion
Existing DBT tools usually use one of two annotation types:

1. a call to a function that is empty except for a short instruc-
tion sequence to prevent “identical code folding” opti-
mizations from transforming all the annotation functions
into a single function [25, 29], or

2. a sequence of instructions inserted at the annotation site
that has the effect of a nop during native execution but
can be distinctively recognized by the DBT tool.

The empty functions are simple and flexible, allowing any
number of arguments to the annotation, though the cost of
the empty function call increases with the number of argu-
ments (Table 1). Valgrind’s approach limits annotations to 5
arguments and requires more effort for the DBT tool to de-
tect because the distinct instruction sequence is 12 bytes long
for 32-bit applications and 16 bytes long for 64-bit applica-
tions. This not only requires more bytes to be examined dur-
ing annotation detection, it also causes a complication when
a basic block is truncated in the middle of an annotation. In
this case, the DBT tool must either maintain a state flag for
each thread indicating that the last decoded instruction could
be part of an annotation, or to simply read beyond the end
of a basic block to see if the subsequent bytes might form
an annotation. The former approach is wasteful because the
flag must be checked very frequently and it is almost always
off, while the latter approach risks a segfault if the forward
bytes are not readable. Valgrind’s annotations also rely on
GCC pragmas which are not available in other compilers.

One arg Five args Five varargs
ANNOTATIONDR annotation 1.54× 1.54× 1.54×
TSan annotation 2.35× 3.34× 4.01×
Valgrind annotation 3.05× 3.05× N/A

Table 1: Native execution overhead of binary annotations in the
extreme case of annotating every array index expression in the
SPEC CPU 2006 benchmark 470.lbm.

Our annotation scheme using a jump over argument setup
improves on both approaches. It is more efficient than al-
ways performing a function call. It also out-performs ex-
isting inline assembly annotations, as (1) the annotation is
completely skipped by direct jumps during a native run (in-
cluding argument setup code), (2) the annotation arguments
use as many registers as the platform calling convention al-
lows, and (3) the presence of an annotation can more effi-
ciently detected. Table 1 shows the annotation overhead in
an extreme case of adding 486 annotations in the inner loops
of the lbm array computation from the SPEC 2006 bench-
mark suite. Even though the annotation is executed every
time an array value is indexed, the overhead is just 50%. De-
tecting the annotation in a DBT tool still requires reading
beyond the end of a basic block in case it has been truncated
in the middle of an annotation. But our approach minimizes
the cost of a potential segfault by minimizing the number of
conditions in which (1) the risk is taken and (2) there is actu-
ally no annotation present. We selected the first two instruc-
tions of the annotation to be relatively rare for normal code:



(1) a direct short jump of fixed length (which varies per plat-
form), and (2) int 2C, which is the only instruction in the
Intel x86 ISA to start with byte CD. A basic block will usu-
ally terminate at the jump, so we only need to read the next
byte to determine whether further unsafe reading is required
to complete the detection, and this one-byte read is relatively
inexpensive because in most cases it lies on the same page
as the jump, which guarantees it must be readable. Note that
the approach is slightly different for 64-bit Windows where
inline assembly may not be supported (Section 4.3).

4.3 Annotations in 64-bit Microsoft Visual Studio
The 64-bit Microsoft Visual Studio compiler presents a spe-
cial case for the annotations because it does not support in-
line assembly. Without inline assembly, the annotation must
be defined in ordinary C code, from which the compiler may
produce a broad range of assembly sequences. Compiler op-
timizations such as dead code elimination make this espe-
cially complex because the annotation itself is dead code—
in a native run the execution always jumps over the anno-
tation body. It is also common for the compiler to move
parts of the annotation, for example sharing a single regis-
ter load between two annotations within the same function,
which would make the annotation unrecognizable to ANNO-
TATIONDR because the register load is one of the key iden-
tifying elements of the annotation.

Listing 2 presents the C code for the ANNOTATION()
macro, which takes the following arguments:

• annotation: the name of the annotation function, as
defined in the target application.

• native code: a block of statements to execute instead of
the annotation during native execution of the application
(may be empty).

• ...: arguments to the annotation function, corresponding
to the formal parameters of the annotation function.

The annotation begins and ends with conditional branches,
both of which are never taken during native executions. The
three values used in the conditional branches are specially
selected to prevent compiler analyses from determining that
the condition will always be false:

# d e f i n e HEAD (0 x f f f f f f f f f f f f f f f 1 − (2 ∗ LINE ) )
# d e f i n e TAIL (0 x f f f f f f f f f f f f f f f 0 − (2 ∗ LINE ) )
# d e f i n e GET RETURN PTR ( ) \

( ( unsigned i n t 6 4 ) A d d r e s s O f R e t u r n A d d r e s s ( ) )
# d e f i n e ANNOTATION( a n n o t a t i o n , n a t i v e c o d e , . . . ) \
do { \

i f ( GET RETURN PTR ( ) > HEAD) { \
e x t er n c o n s t char ∗ a n n o t a t i o n ## l a b e l ; \

i n t 2 c ( ) ; \
m p r e f e t c h w ( a n n o t a t i o n ## l a b e l ) ; \

d e b u g b r e a k ( ) ; \
a n n o t a t i o n ( VA ARGS ) ; \

} e l s e { \
n a t i v e c o d e ; \

} \
} whi le ( GET RETURN PTR ( ) > TAIL )

Listing 2: Annotation macro for 64-bit Microsoft Visual Studio.

• GET RETURN PTR() leverages intrinsic function
AddressOfReturnAddress to obtain a pointer to the

return address on the stack.
• HEAD generates an integer larger than any stack address

on 64-bit Windows (the built-in macro LINE is sub-
stituted with the source code line number on which the
annotation macro is used).

• TAIL generates another such integer that is distinct from
any HEAD in an annotation on any subsequent line in the
source file. This prevents ambiguity between the tail of
one annotation and the head of the next (even if multiple
annotations appear on the same line).

The int2c() serves as a hint to ANNOTATIONDR that the
preceding branch belongs to an annotation. The first byte of
this instruction is distinct from the first byte of any other in-
struction on x86-64, making it possible to examine just one
byte following any direct branch and determine with high
accuracy whether it could be part of an annotation. Since
the compiler must regard an interrupt similar to a memory
fence, the interrupt is guaranteed not to be reordered by com-
piler optimizations away from the branch instruction. The
prefetch of annotation## label is the unique identifier
of the annotation, from which ANNOTATIONDR determines
(1) that the instruction sequence is definitely an annotation,
and (2) the name of the annotation function (since there may
be no symbol associated with the annotation function call,
for example in a stripped binary). The debugbreak() in-
struction simplifies ANNOTATIONDR’s parsing of the anno-
tation by preventing the compiler from interleaving argu-
ment setup for the annotation call with the prefetch of the
annotation label (since an interrupt is regarded similar to a
memory fence). Note that while this definition of the anno-
tation macro is robust in practice on all available versions
of Microsoft Visual Studio, it is possible that future versions
of the compiler may require the annotation macro definition
to be revisited. Listing 3 shows a sample of an annotation
compiled in Microsoft Visual Studio 2012.

; i f (GET RETURN PTR() > HEAD)
1400019B6 : lea rax , [ r s p +0C8h ]
1400019BE : cmp rax , 0 FFFFFFFFFFFFFDEFh
1400019C4 : jbe 1400019E5
; annotation h int : byte CD fo l l ows the branch
1400019C6 : int 2Ch
; annotation l abe l ( r e g i s t e r or immediate operand )
1400019C8 : mov rax ,< c o n s t a n t>
1400019CF : prefetchw [ r a x ]
; in t3 i s o l a t e s prefetch from argument setup
1400019D2 : int 3
; argument setup code
1400019D3 : mov edx , 1
1400019D8 : mov ecx , [ 1 4 0 0 3 0 1 6 0 h ]
; c a l l annotat ion log ()
1400019DE: call a n n o t a t i o n l o g
1400019E3 : jmp 1400019 F7
; nat ive code : c a l l s p r i n t f ()
1400019E5 : mov edx , [ 1 4 0 0 3 0 1 6 0 h ]
1400019EB : lea rcx ,< c o n s t a n t>
1400019 F2 : call p r i n t f
; whi le (GET RETURN PTR() > TAIL)
1400019 F7 : lea rax , [ r s p +0C8h ]
1400019FF : cmp rax , 0 FFFFFFFFFFFFFDEEh
140001A05 : ja 1400019B6

Listing 3: Annotation compiled in Visual Studio 2012.



5. Inference-Based Optimization
The requirement to specially compile the target applica-
tion with annotations can be avoided by inferring the JIT
code regions and instrumenting stores that frequently write
to them. This section introduces INFERENCEDR, an exten-
sion of ORIGINALDR that includes the selective fragment
removal from ANNOTATIONDR.

Parallel Memory Mapping Since there are no annotations
to inform INFERENCEDR about JIT writes, it initially uses
the detection scheme from ORIGINALDR. In addition, for
each page A of memory from which dynamic code has
been executed, INFERENCEDR associates a counter cA with
A and increments cA on every write fault taken against
A. When cA exceeds a configurable threshold (default 12),
INFERENCEDR creates a parallel mapping A′ with writable
permission. Since both the original page of memory and the
new parallel mapping access the same underlying physical
memory, a write to the parallel page is immediately visible
for reading at the original page address. Similar parallel
mapping techniques appear in recent works [9, 16, 24].

For the current and every subsequent write fault taken
against A from writing basic block w, INFERENCEDR in-
struments each store instruction s in w with a prologue that
(1) identifies each page sp overlapping the address range sr
that s is about to write, and (2) queries a hashtable for any
page P ∈ sp that has been mapped to a parallel page P ′. For
every such pair 〈P, P ′〉, the prologue continues:

1. Lookup sr in the fragment overlap hashtable (Sec. 3.3).
If any fragments have been translated from sr:

(a) Exit to DynamoRIO and flush the stale fragments.

2. Replace sr (in P ) with s′r (in P ′) so s can write freely.
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Figure 4: Parallel mapping in INFERENCEDR. Physical page A is
mapped both to virtual page A and A′, such that a write to A′ is
equivalent to a write to A.

Figure 4 illustrates a parallel mapping A and A′, along
with reads from A (arrows a, b and e), faulting writes to A
(arrows c and d), and instrumented stores to A via A′ (arrows
f and g). On deallocation of A, INFERENCEDR removes
both cA and A′. These techniques combine to (1) eliminate
the concurrent writer problem, and (2) avoid redundant in-
vocation of the fragment flushing routine.

Eliminating the Concurrent Writer Problem Without an-
notations, detecting modifications requires not only that
writable+executable memory pages be marked read-only,
but also that the read-only status be maintained even if the
executable permission is removed (until the memory is deal-
located). Otherwise code fragments from the entire region
would have to be flushed when the pages are set executable
again, because any code changes would have gone unseen.
This greatly increases the impact of the concurrent writer
problem, making it especially significant for all JIT writes
to be quickly instrumented with the redirection to the par-
allel page. Fortunately, large JIT engines tend to be well
organized, and we find that a small number of stores are
responsible for all the JIT writes.

Avoiding Redundant Fragment Flushing Even without
the concurrent writer problem, extraneous invocations of the
fragment flushing routine will generate significant overhead.
The DynamoRIO clean-call facility allows any internal func-
tion to be called from the code cache by making a soft con-
text switch, and this facility is used to invoke the same se-
lective fragment flushing routine that was invoked by the
annotation in Section 3. While the context switch is rela-
tively efficient (approximately 100 CPU cycles), it becomes
a significant expense when invoked for data writes in the JIT
code area, which are frequent for highly optimized JITs like
V8 and Ion. Redundant fragment flushing also occurs when
the JIT overwrites code that was never executed—and hence
never translated into the code cache. In both cases, the frag-
ment overlap hashtable will contain no entries for the JIT
write span, allowing the flushing clean-call to be skipped.

Constructing the Parallel Mapping On Linux it is not
generally possible to create the parallel mapping from the
target application’s original memory allocation, because a
shared memory file descriptor is required to attach the sec-
ond mapping to the physical memory of the first mapping
(a memory allocation is typically made via libc function
malloc(), which does not use shared memory). Instead, IN-
FERENCEDR maps a new shared memory page, copies the
contents of the original page to it, and replaces the original
page with a new parallel mapping of the copy. In the unusual
case that the application has already setup a parallel mapping
of its own, it would be possible for INFERENCEDR to query
the OS for the location of the mapping and (if necessary) re-
place it with a specialized form of our parallel mapping that
additionally maintains the application’s original mapping.

JIT vs. Trampoline Both of the DGC strategies presented
in Sections 3 and 5 are specifically optimized for large JIT
engines that generate megabytes of code in a single execu-
tion. These optimizations work equally well for smaller JIT
engines such as the Microsoft managed runtime, which gen-



erates small trampolines to bind application components to
system libraries and services at runtime. The trampolines
range in size from 4 bytes to roughly 250 basic blocks,
so DynamoRIO will in some cases designate those tram-
poline regions as JIT code regions. While the frequency of
code changes in these trampolines is much lower than for
a JavaScript JIT engine, the concurrent writer problem has
a significant enough impact to warrant parallel mapping the
small number of pages occupied by the trampolines.

Implicit JIT Code Region Expansion When an instru-
mented store targets a page that has been marked read-only
by INFERENCEDR for code change detection, the instru-
mentation is of no advantage—there is no parallel mapping
for the page yet, so the concurrent writer problem still re-
quires the entire region to be flushed. Since any instrumented
store is already known to write JIT code, it is more likely that
any executable page it writes to also contains JIT code. To
minimize the overhead of region flushing, INFERENCEDR
eagerly expands the JIT code region to include the written
page. INFERENCEDR additionally avoids the page fault by
placing read-only markers in the parallel mapping hashtable,
allowing the instrumentation to determine that its store is
about to fault, and instead make a clean-call to emulate the
write and flush the region.

5.1 Parallel Mapping on Other Platforms
The basic technique for parallel mapping on Linux can also
be applied for DBT running under Windows, though the pro-
cedure is slightly more complex. Allocating memory in Win-
dows is a two stage process that requires first reserving the
virtual address space and then committing physical storage
to back the virtual address space. One complication is that
portions of the reserved memory may be committed sepa-
rately. Thus when a DBT engine discovers that a given re-
serve contains JIT code, the straightforward implementation
of the DBT would simply copy the entire memory region
and perform the parallel remapping. We expect that INFER-
ENCEDR would port naturally to Mac OS X, which is based
on Linux and supported by ORIGINALDR.

6. Evaluation
We evaluated the performance of each optimization stage
from ORIGINALDR to INFERENCEDR relative to native
performance on the Octane and Kraken [22] JavaScript
benchmarks for two popular JIT engines, Chrome V8 and
Mozilla Ion. We do not report results for SunSpider as it has
largely been made obsolete by advances in JITs. We focus
on JavaScript JITs because (1) other popular JITs such as
Android’s Dalvik and the Microsoft Managed Runtime are
not available for our target platform, (2) JITs for higher-
level scripting languages like Lua and PHP do not have
well-established performance benchmarks and (3) Java is
not especially relevant for DBT because the Java platform
has its own ecosystem of tools that operate at the JVM level
where interesting information is more readily visible. Ta-
ble 2 shows both the performance overhead and improve-
ment of each optimization for both Octane and Kraken.

All reported overheads represent the geometric mean of 3
runs, with P value of the two-tailed Student’s t-test [11] no
more than 9.076E-7. The test platform for all benchmarks
is Ubuntu 13.04 on an Intel Xeon E3-1245 v3 running at
3.40GHz with 16GB memory and solid state drives.
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Figure 5: Optimization performance for Octane on V8.
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Figure 6: Optimization performance for Octane on Ion.

Performance Improvement Figures 5 and 6 show the
speedup of INFERENCEDR over ORIGINALDR and Pin (the
performance of ANNOTATIONDR with selective fragment
removal is nearly identical to INFERENCEDR). While our
technique is applicable to DBT in general, other platforms
such as QEMU and Valgrind are omitted from these results
because they incur enough other overhead that DGC han-
dling is not a bottleneck. Librando reports 3.5× overhead on
Octane to randomize the V8 output for improved security.
We focus our comparison on Octane here, but the relative
performance of Pin is similar on Kraken.



Octane Suite Kraken Suite
Chrome V8 Mozilla Ion Chrome V8 Mozilla Ion

Score Overhead Speedup Score Overhead Speedup Time Overhead Speedup Time Overhead Speedup
ORIGINALDR 2271 15.80× - 7185 4.36× - 119s 9.08× - 36s 3.25× -
ANNOTATIONDR +
VM Area Isolation 9514 3.77× 4.19× 11914 2.63× 1.66× 35s 2.67× 3.4× 24s 2.14× 1.5×

ANNOTATIONDR +
Fragment Removal 14532 2.47× 6.40× 13797 2.27× 1.92× 24s 1.87× 4.96× 22s 1.95× 1.64×

INFERENCEDR 14257 2.52× 6.28× 14589 2.15× 2.03× 23s 1.78× 5.17× 23s 2.11× 1.57×
Native 35889 - - 31340 - - 13s - - 11s - -

Table 2: Performance improvement through several stages of DynamoRIO JIT optimization, as demonstrated in the Octane and Kraken
JavaScript benchmark suites for both Chrome V8 and Mozilla Ion. Overhead is relative to native, and speedup is relative to ORIGINALDR.

Figures 5 and 6 additionally illustrate that INFERENCEDR
performs much better on some benchmarks in the Octane
suite than others. Runtime analysis reveals that the bench-
marks for which INFERENCEDR performs best are get-
ting the most mileage out of their compiled code, whereas
more cumbersome benchmarks like CodeLoad and Type-
script compile more code and execute it fewer times. The
worst case for INFERENCEDR is the two latency scores,
which report special measurements taken during the execu-
tion of Splay and Mandreel. SplayLatency isolates garbage
collection time, while MandreelLatency individually times
compile-intensive operations and squares the duration of
each timed event before accumulation to penalize delays
during these operations. This creates a worst-case scenario
for INFERENCEDR, since its overhead is incurred during the
operations that are penalized for latency.

Comparison of Approaches While INFERENCEDR and
ANNOTATIONDR offer similar performance, they minimize
overhead in slightly different ways. Both approaches are able
to isolate the specific code fragments that are modified by a
JIT write, but only INFERENCEDR is able to avoid exiting
the code cache in the common case that the JIT modifies or
removes code that was never translated. Since a single store
instruction only modifies a small number of bytes, the IN-
FERENCEDR instrumentation can easily query the hashtable
of overlapping code fragments from within the code cache.
But the annotation may specify a JIT write spanning many
pages of memory, making it significantly more complex
(though not impossible) to perform the overlap check from
within the code cache. This weakness in ANNOTATIONDR
is also its advantage, because it can remove a very large span
of stale code fragments during a single cache exit. For exam-
ple, Chrome V8 often generates several pages of code into
a non-executable buffer and then copies it into the JIT code
area. Since INFERENCEDR instruments low-level store in-
structions in the memcpy function, it must invoke the flush
operation for each 16-byte write. Furthermore, shared func-
tions like memcpy are used for many purposes other than
copying JIT code, so while the overlap check is very effi-
cient, the vast majority of overlap checks for the memcpy
stores find no fragments to flush. Conversely, since the an-
notation of the JIT copy function is placed at a much higher
level within the JIT code, ANNOTATIONDR is able to flush
the entire set of pages in a single exit of the code cache.

While the annotations represent a contribution in them-
selves, ANNOTATIONDR would typically only be preferable
in a scenario where INFERENCEDR is not feasible, since
they offer similar performance. One example of such a sce-
nario is that INFERENCEDR may not be fully compatible
with 32-bit applications that can consume large amounts of
memory, because during a memory-intensive execution there
may not be sufficient address space to construct the paral-
lel memory mappings. There is also a special case on the
32-bit Windows platform in which the application could ini-
tially allocate all of its memory in one very large reserve,
requiring INFERENCEDR to double-map the entire reserve
(Section 5.1)—which may not be possible in the 4GB ad-
dress space of a 32-bit process. Should this become an issue,
the user can choose to either (1) avoid such large workloads
when running under the DBT tool, or (2) annotate the appli-
cation and use ANNOTATIONDR.

Another consideration is security—the presence of the
parallel mapping in virtual memory makes it possible for
an adversary to write to the JIT code region undetected
by the DBT. This could potentially create a vulnerability
for a security-focused client of INFERENCEDR that needs
to receive notifications of all DGC writes. Since protecting
the parallel mappings inevitably creates additional overhead,
ANNOTATIONDR may be the better alternative.

Annotation Developer Effort The amount of work re-
quired to annotate a target application varies. Annotating Ion
required a complex runtime analysis to place 17 annotations.
V8 was much easier because it is designed for portability to
platforms that require an explicit i-cache flush—we only
needed to annotate the global flush function in one place,
and memory handling functions in 4 places, all of which
were easy to find with no runtime analysis. For builds of
V8 having Valgrind annotations enabled, ANNOTATIONDR
can use the existing Valgrind annotation of the i-cache flush
function, making the integration that much easier.

Space Overhead Both optimization approaches maintain
hashtables that consume up to 2× the total size of all live
DGC fragments, which is a moderate overhead in compar-
ison to application data. INFERENCEDR additionally dou-
bles the number of virtual memory mappings required for
JIT code regions, but this does not increase physical mem-
ory usage (beyond OS accounting for the mappings).



SPEC CPU 2006 SPEC Int SPEC fp
ORIGINALDR 12.27% 17.73% 8.60%
INFERENCEDR 12.35% 17.88% 8.60%

Table 3: INFERENCEDR does not increase overhead for normal
applications that do not dynamically generate code. ANNOTA-
TIONDR is omitted because INFERENCEDR includes annotation
detection (for the benefit of tools).

Negligible Side Effects We show that the optimization
does not negatively impact the performance of DynamoRIO
on normal applications by evaluating INFERENCEDR rela-
tive to ORIGINALDR on the SPEC CPU 2006 benchmark
suite (Table 3). The SPEC CPU 2006 benchmarks include a
broad range of applications written in C, C++, and Fortran,
but does not include any dynamically generated code.

7. Conclusion
Dynamically generated code has become commonplace in
modern applications. Previous approaches to maintaining
consistency between dynamically generated code and their
cached copies introduced significant overhead into dynamic
binary translation systems. We present two new approaches
that enable dynamic binary translation systems to efficiently
support dynamically generated code. Our benchmark results
show that both approaches significantly improve on the state
of the art by factors as high as 7.3× over state-of-the-art
DBT systems, enabling these systems to support dynami-
cally generated code with reasonably low overheads.
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