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Abstract—Memory corruption, reading uninitialized memory,
using freed memory, and other memory-related errors are among
the most difficult programming bugs to identify and fix due to
the delay and non-determinism linking the error to an observable
symptom. Dedicated memory checking tools are invaluable for
finding these errors. However, such tools are difficult to build,
and because they must monitor all memory accesses by the
application, they incur significant overhead. Accuracy is another
challenge: memory errors are not always straightforward to
identify, and numerous false positive error reports can make a
tool unusable. A third obstacle to creating such a tool is that it
depends on low-level operating system and architectural details,
making it difficult to port to other platforms and difficult to
target proprietary systems like Windows.

This paper presents Dr. Memory, a memory checking tool that
operates on both Windows and Linux applications. Dr. Memory
handles the complex and not fully documented Windows envi-
ronment, and avoids reporting false positive memory leaks that
plague traditional leak locating algorithms. Dr. Memory employs
efficient instrumentation techniques; a direct comparison with the
state-of-the-art Valgrind Memcheck tool reveals that Dr. Memory
is twice as fast as Memcheck on average and up to four times
faster on individual benchmarks.

Index Terms—Memory Checking, Shadow Memory, Dynamic
Optimization

I. INTRODUCTION

Memory-related errors are among the most problematic pro-
gramming bugs. These errors include use of memory after free-
ing it, reads of uninitialized memory, memory corruption, and
memory leaks. Observable symptoms resulting from memory
bugs are often delayed and non-deterministic, making these
errors difficult to discover during regular testing. Strategies
for detecting memory bugs usually rely on randomly encoun-
tering visible symptoms during regular application execution.
Furthermore, the sources of these bugs are painful and time-
consuming to discover from observed crashes that occur much
later than the initial memory error. For all of these reasons,
memory bugs often remain in shipped products and can show
up in customer usage. Dedicated memory checking tools are
needed to systematically find memory-related errors.

A. Memory Checking Tools

Memory checking tools in use today include Valgrind
Memcheck [16], Purify [7], Intel Parallel Inspector [9], and
Insure++ [15]. Such tools identify references to freed memory,
array bounds overflows, reads of uninitialized memory, invalid
calls to heap routines such as double frees, and memory leaks.
These tools are large, complex systems that are difficult to
build and perfect.

There are three major challenges in building a memory
checking tool. Performance is a serious challenge for these

tools because of the heavyweight monitoring required to detect
memory errors. Application heap and stack allocations must
be tracked, and each memory access by the application must
be checked by the tool, incurring significant overhead.

Accuracy is another challenge: valid memory operations that
appear to violate memory usage rules are not uncommon in
system libraries and other locations out of control of the tool
user, and false positives must be avoided while still detecting
real errors. The largest class of false positives are uninitialized
read errors stemming from copying whole words containing
valid sub-word data (discussed in Section II-A); avoiding
these false positives requires monitoring not only memory
accesses but nearly every single application instruction, further
decreasing performance. Accuracy is also an issue for leak
checking. To detect leaks, most tools perform a garbage-
collection-style scan at application exit to identify unreach-
able heap allocations. However, without semantic information
assumptions must be made and can lead to false positives.

A third challenge in creating memory checking tools is their
dependence on low-level operating system and architectural
details. Notably, the most popular non-commercial tool, Mem-
check, remains a UNIX-only tool despite widespread demand
for a Windows port. Since these tools typically operate in
user mode, memory references made by the operating system
cannot be directly monitored by the tool. Instead, each system
call’s effects on application memory must be emulated. This
requires detailed knowledge of each parameter to each system
call, which is not easy to obtain for proprietary systems
like Windows. Additionally, the Windows programming en-
vironment contains multiple heap libraries, some relatively
complex, which complicate heap monitoring.

This paper presents Dr. Memory, a memory checking tool
with novel solutions to the challenges listed above. Im-
proving on each of these issues makes for a more prac-
tical tool. Dr. Memory is open-source and available at
http://code.google.com/p/drmemory/.

B. Contributions

This paper’s contributions include:

• We describe the design for a complete memory checking
tool that supports both Windows and Linux.

• We enumerate possible function wrapping approaches
and present a wrapping technique that is transparent and
handles mutual recursion, tailcalls, and layered functions.

• We present a novel technique for identifying and delim-
iting stack usage within heap memory.

• We categorize the sources of false positives in
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Fig. 1. Example of shadow memory corresponding to application memory
within the application stack and heap.

reachability-based leak detection and present novel tech-
niques for avoiding them.

• We present an encoding for callstacks that significantly
reduces memory consumption.

• We describe a series of instrumentation techniques and
optimizations that improve on the performance of the
state-of-the-art memory checking tool, Memcheck, by an
average of 2x and by up to 4x on individual benchmarks.

C. Outline

Section II presents the overall design of our memory check-
ing tool and our method of inserting instrumentation into
the running application. Section III shows how we achieve
good performance with our inserted instrumentation. Next,
Section IV discusses wrapping heap library functions, fol-
lowed by handling kernel interactions in Section V. Section VI
describes our leak detection scheme. Experimental results with
Dr. Memory are presented in Section VII.

II. SYSTEM OVERVIEW

Dr. Memory uses memory shadowing to track properties
of a target application’s data during execution. Every byte of
application memory is shadowed with metadata that indicates
one of three states:

• unaddressable: memory that is not valid for the applica-
tion to access.

• uninitialized: memory that is addressable but has not been
written since it was allocated and should not be read.

• defined: memory that is addressable and has been written.
Our notion of addressability is more strict than that provided

by the underlying operating system and hardware. In addition
to considering invalid memory pages as unaddressable, we
inspect the interior of the stack and the heap: memory beyond
the top of the stack is considered unaddressable, and memory
on the heap that is outside of an allocated malloc block is
also unaddressable, as shown in Figure 1.

A. Tool Actions

Dr. Memory uses this shadow metadata to identify memory
usage errors. Reading or writing unaddressable data is reported
as an error. Reading uninitialized data is more complex,
however. Sub-word values are typically copied in word units;
e.g., a one-byte or two-byte variable will be pushed on the
stack or copied elsewhere as a four-byte value (for a 32-bit

application). Unless the sub-word variable is explicitly packed
into a struct by the programmer, the additional bytes will
simply be uninitialized padding bytes. If a tool reports any read
of an uninitialized byte as an error, most applications would
exhibit numerous false positives, making such a tool more
difficult to use as true errors are drowned out by false errors.
To eliminate these false positives, instead of using shadow
metadata that is permanently associated with its corresponding
application memory location, we dynamically propagate the
shadow values to mirror the application data flow and only
report errors on significant reads that affect program behavior,
such as comparisons for conditional jumps or passing data to
a system call. This requires that we shadow not only memory
but registers as well. Our implementation propagates shadow
values through general-purpose registers but not floating-point
or multimedia registers as the latter rarely if ever exhibit the
sub-word problem.

Table I summarizes how Dr. Memory maintains the shadow
metadata and when it checks for errors. For example, Dr.
Memory intercepts calls to library routines that allocate mem-
ory, such as malloc and HeapAlloc, and performs two
actions: adjusting the size of the allocation to add redzones
(see Section IV-A) and updating the shadow memory to
indicate that the requested allocation is valid to access. Ex-
isting memory checking tools, including Memcheck, follow
similar courses of action, though some tools do not propagate
shadow values and suffer from the sub-word false positives
described above. Propagating shadow metadata requires taking
action on nearly every single application instruction. When
combining two shadow values during propagation (e.g., two
source operands to an arithmetic instruction), the general rule
is that undefined combined with defined results in undefined.
We encode our shadow values such that we can use a bitwise
or to compute this operation.

B. Instrumentation System
Dr. Memory is built on the open-source DynamoRIO [4]

dynamic instrumentation platform, which provides Dr. Mem-
ory with the necessary monitoring capabilities. DynamoRIO
uses a software code cache to support inserting arbitrary
instrumentation that is executed interleaved with copies of the
original application instructions (Figure 2).

III. EFFICIENT IMPLEMENTATION

We use a combination of instrumentation techniques to
perform the actions in Table I efficiently.

A. Shadow Metadata
Our shadow metadata for registers is stored in directly-

addressable thread-local storage, removing any need to spill
registers to access it. For memory, we perform a table lookup
that translates the application address to its corresponding
shadow address. Our translation table divides the address space
into identical regions and uses a shadow block to store the
shadow values for each region.

We use two shadow bits to encode the shadow state of
each application byte. An aligned four-byte application word’s
shadow state can be packed into a single shadow byte and



Category Application Action Corresponding Tool Action
library call malloc, HeapAlloc add redzones, mark between as uninitialized
library call realloc, HeapReAlloc add redzones, copy old shadow, mark rest as uninitialized
library call calloc, HeapAlloc(HEAP_ZERO_MEMORY) add redzones, mark between as defined
library call free, HeapFree mark unaddressable and delay any re-use by malloc
system call file or anonymous memory map mark as defined
system call memory unmap mark as unaddressable
system call pass input parameter to system call report error if any part of parameter is not defined
system call pass output parameter to system call report error if any part of parameter is unaddressable; if call

succeeds, mark memory written by kernel as defined
instruction decrease stack pointer register mark new portion of stack as uninitialized
instruction increase stack pointer register mark de-allocated portion of stack as unaddressable
instruction copy from immediate or fp/xmm register mark target as defined
instruction copy from general-purpose register or memory copy source shadow to target shadow
instruction combine 2 sources (arithmetic, logical, etc. opera-

tion)
combine source shadows, mirroring application operation, and
copy result to target shadow

instruction access memory via base and/or index register report error if addressing register is uninitialized
instruction access memory report error if memory is unaddressable
instruction comparison instruction report error if any source is uninitialized
instruction copy to floating-point or xmm register report error if source is uninitialized

Table I. The actions taken by Dr. Memory for each application action. All memory starts out in an unaddressable state, except the executable and libraries,
which are defined. The shadow values of memory and registers are propagated in a manner mirroring the corresponding application data flow, with checks
for errors at key operations. Redzones are explained in Section IV-A.
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Fig. 2. The components of Dr. Memory. The original application’s code is
redirected through a software code cache by the DynamoRIO dynamic binary
translator. DynamoRIO calls Dr. Memory on each new piece of code, allowing
the tool to insert instrumentation around every application instruction.

operated on all at once, to save memory, when races on writing
to adjacent bytes are synchronized (at a performance cost)
or not a concern (a tradeoff for the user to decide). Most
word-sized memory references are word-aligned, and we tune
our instrumentation for the aligned case when using packed
shadow memory.

B. Fastpath and Slowpath
We divide Dr. Memory’s actions into two instrumentation

paths: the fastpath and the slowpath. The fastpath is im-
plemented as a set of carefully hand-crafted machine-code
sequences or kernels covering the most performance-critical
actions. Fastpath kernels are either directly inlined or use
shared code with a fast subroutine switch. Obtaining shadow

metadata and propagating shadow values for an individual
application instruction occurs in inlined instrumentation that
is inserted prior to the copy of the application instruction in
the code cache. More extensive fastpath kernels like handling
stack pointer updates are performed in separate functions with
a minimal context switch.

Rarer operations are not worth the effort and extra mainte-
nance costs of using hand-coded kernels and are handled in
our slowpath in C code with a full context switch used to call
out to the C function. Non-word-aligned memory references,
complex instructions, error reporting, and allocation handling
are all done in the slowpath. While most of the time execution
remains on the fastpath, the slowpath must be efficient as well
to avoid becoming a performance bottleneck.

C. Instrumentation Optimizations

We have applied a number of key optimizations to our
fastpath kernels, to our general shadow memory handling that
is used in both the fastpath and slowpath, and to other aspects
of Dr. Memory.

1) Table lookup for addressability: When an aligned four-
byte memory reference’s shadow value is packed into a single
byte, identifying whether any of the 2-bit subsequences is
unaddressable is best done with a table lookup to cover all
possibilities, rather than checking for a few common combina-
tions such as all-unaddressable or all-uninitialized values and
exiting to the slowpath for other combinations, or enumerating
all combinations in inlined code.

2) Use faults to detect writes to special shadow blocks:
Like Memcheck, Dr. Memory uses unique, shared shadow
blocks (special blocks) in the translation table to save memory
for large address space regions with identical shadow values,
such as unallocated space (unaddressable) or libraries (de-
fined). Rather than adding explicit checks on writes to these



special blocks, Dr. Memory keeps them read-only and uses
fault handling to detect when a special block needs to be
replaced with a regular block.

3) Whole-basic-block register spilling: Rather than spilling
and restoring registers around each application instruction, Dr.
Memory analyzes one basic block at a time and shares spill
registers across the whole block, reducing the number of spills.

4) Binary callstacks: Printing to a text buffer takes time
that can be significant for applications with many allocations.
Text callstacks also incur a large memory cost. Section VI-D
describes our binary callstack encoding that saves both time
and space.

5) Fast replacement routines: Modern string and memory
search and copy routines (strcpy, memset, strlen, etc.)
are highly optimized in ways that produce false positives in
memory checking tools. The typical approach is to replace
the application’s version of each routine with a simple byte-
at-a-time implementation. We found, however, that such an
implementation can result in performance degradation, as
applications often spend a lot of time in these routines.
Using word-at-a-time loops when aligned results in significant
performance improvements for Dr. Memory.

6) Sharing shadow translations: Sharing shadow transla-
tion results among adjacent application memory references
that use identical base and index registers and differ only
in displacement avoids redundant shadow table lookups and
reduces instrumentation size.

7) Fast stack adjustment handling: Efficient stack adjust-
ment handling is critical for performance of a memory check-
ing tool. Natively, the application performs a simple arithmetic
operation on the stack pointer, while the tool must update
shadow values for each memory address between the old and
new stack pointer. This occurs on every function frame setup
and teardown as well as on each push or pop instruction. Dr.
Memory uses optimized handlers for specific stack deltas, as
well as an optimized general routine that uses a word-at-a-
time loop bracketed by byte-at-at-time loops for leading and
trailing un-shadow-aligned addresses.

8) Storing displacements in the translation table: Rather
than storing the absolute address of each shadow block in
the shadow translation table, the displacement from the corre-
sponding application address is stored, reducing the length of
the translation code.

These eight optimizations, combined with our fastpath ker-
nels, result in efficient instrumentation. Some of Dr. Memory’s
most complex operations, however, happen in the slowpath and
are discussed next: tracking heap allocations.

IV. HEAP TRACKING

Many of our heap tracking design decisions were shaped
by the complex Windows environment. Windows applications
have several heap libraries to choose from. At the lowest level
are a set of heap routines in the ntdll.dll system library’s
Rtl interface. Above that, the Windows API provides multiple
heap region support and control over many aspects of heap
allocation, including synchronization and anti-fragmentation
strategies. Additionally, C and C++ applications can use the

C library’s malloc and free and the C++ operators new and
delete. Implementations of the C library routines ultimately
use the Windows API routines to obtain memory, but in
some instances they perform their own sub-allocations. The
Windows API routines in turn invoke the Rtl functions, which
use system calls to acquire new memory for parceling out.
These multiple layers of heap routines, with possible direct
invocations from an application or library to each layer, and
with the possibility of sub-allocation at each layer, complicate
heap tracking.

A. Wrapping Versus Replacing

A memory checking tool must monitor heap allocations
in order to identify errors when reading or writing beyond
the bounds of allocated heap memory. Most tools add a
redzone around each allocation to increase the chance that heap
overflows will not be mistaken for an access to an adjacent
allocation. Tools also delay frees in an attempt to detect use-
after-free errors.

There are two approaches to monitoring and modifying
heap library calls: wrapping and replacing. Wrapping lets the
original library code execute but adds a prologue and epilogue
where the arguments and return value can be modified and
bookkeeping can be updated. Replacing uses a custom function
and does not execute any of the original library function code.

The memory checking tool Memcheck [16], which operates
on a range of UNIX operating systems, replaces heap library
functions. However, on Windows, the additional complexity
of the heap API led to our decision to wrap instead of
replace. To wrap we only need to understand and depend on
a known subset of the API, whereas to replace we would
need to emulate every nuance of the entire API, including
heap validation, serialization and exception-throwing options,
and, the most challenging, undocumented features at the Rtl
layer such as heap tags. Wrapping has other advantages over
replacing. Wrapping preserves a heap layout that is more
faithful to the native execution of the application, though
it may be distorted by redzones. This makes it more likely
that execution under the tool will observe the same behavior,
including bugs, as native execution. Additionally, wrapping
more naturally supports attaching to an application part-way
through execution, where the application has already allocated
heap objects.

B. Transparent Wrapping

Existing instrumentation platforms, including Pin [10] and
Valgrind [14], provide support for wrapping functions. How-
ever, both Pin and Valgrind add an extra frame on the
application stack, which violates transparency, i.e., it perturbs
the semantics of the application and could cause an application
to fail to execute correctly.

We identified and explored three different methods for
wrapping functions transparently and robustly before settling
on the third method for use in Dr. Memory. We require that
the target function execute under control of the tool, with
a pre-hook prior to the call and a post-hook after the call
containing tool code that is executed natively. The pre-hook



is straightforward: there is only one entry point into a library
function, and we simply watch for that address and invoke the
pre-hook at that point. However, locating all return paths from
the function for the post-hook is challenging.

The first technique we considered for locating return paths
is to analyze the code when first encountered. By building
a control-flow graph from the entry point, we can attempt to
identify all the return points. We would then record each return
instruction’s address and invoke our post-hook whenever we
reach one. However, it is not always easy or even possible
to statically analyze an entire function. Hot/cold and other
code layout optimizations, switches and other indirection, and
mixed code and data all complicate analysis.

The second possible technique focuses on the call site.
At a call instruction, we know the return point. If we can
identify the call target we can set up for a post-hook for
that target at the instruction after the call. If that instruction
has already been executed and thus instrumented, we flush
it from the tool’s underlying code cache. To identify the
target, direct calls as well as indirect calls utilizing standard
library import mechanisms (PLT on Linux, IAT on Windows)
are straightforward to handle. However, a call that indirects
through an arbitrary register or memory location may not have
a statically analyzable target. Extra work is required to support
a general pre-hook that identifies the target, and a general post-
hook for an indirect call that targets multiple wrapped routines.

The third technique, which we chose for Dr. Memory, takes
a more dynamic and reactive approach to avoid the limitations
of identifying either return instructions or call targets ahead
of time. Once inside a target function itself, at the entry point,
the return address is obtained and recorded for post-hook
instrumentation when it is reached later. If the instruction at
that address has already been executed, we flush it from the
code cache. We can support multiple wrapped routines called
from one site by storing which function is being returned from.

For all of these techniques, if wrapped routine A makes
a tailcall to wrapped routine B, one of our post-hooks will
be skipped (A for technique one, B for two and three). To
solve the tailcall problem, we watch for a direct jump to a
wrapped function and store the target. When we reach a post-
hook, if a tailcall target is stored, we first perform the post-
hook for that target before acting on the natural post-hook. A
shadow stack could alternatively be used for handling tailcalls.
A Windows exception unwind can also skip a post-hook by
exiting a wrapped routine; we intercept exception handling to
handle this case. A longjmp can be similarly handled.

C. Layered Heap Functions
Once our pre-hooks and post-hooks are in place, we can

take appropriate actions prior to and after each heap library
function, including modifying requested allocation sizes in
order to add redzones and modifying return values to hide
the redzones from the application. With layered heap calls,
however, we need to be careful to only modify the arguments
for the outer layer. We use a recursion counter to identify in
which layer we are currently operating.

We must not report errors when heap library functions
access heap headers or unallocated heap memory. We use a
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separate recursion counter for that purpose: a count that is
incremented for all heap library routines, while our recursion
count for argument adjustments is only incremented in the
core library routines for which we need to modify arguments.

D. Statically Linked Libraries

On Windows, many applications are linked with a static
copy of the C library. Identifying malloc library routines for
these applications requires debugging information. The PDB
debugging information format on Windows is not well docu-
mented and is best parsed using Microsoft’s dbghelp.dll.
That library in turn imports from five or more Windows API
libraries. Using all of these libraries in the same process as the
application requires a private loader that can isolate a second
copy of a library from the application’s copy. DynamoRIO pro-
vides this private loader for Dr. Memory’s use. An alternative
is to launch a separate process to read the symbols. While that
can incur performance overhead from communication latency,
a separate process can be necessary for applications that have
extremely large debugging data that will not fit into the same
process as the application.

E. Distinguishing Stack From Heap

Memory checking tools must monitor all stack pointer
changes to mark the memory beyond the top of the stack as
invalid and to mark newly allocated stack memory as unini-
tialized. However, unlike heap allocations, stack allocations do
not normally use library routines (one exception is alloca).
Instead, the stack pointer register is directly modified, either
with a relative addition or subtraction, or by copying an
absolute value from a frame pointer or elsewhere. When an
absolute value is copied, it can be difficult to distinguish a
stack pointer change on the same stack from a swap to a
different stack. Stack swaps are used for lightweight threads
(such as fibers on Windows) and other application constructs.

There are serious consequences to incorrectly interpreting a
stack register change. Figure 3 illustrates one such scenario.
The figure shows two stacks allocated on the heap and sepa-
rated by non-stack data, along with the corresponding shadow
memory for each of the three heap allocations. The arrows
indicate the top of each stack. Initially the stack pointer register
points at the top of the bottom stack, the filled-in arrow. If the
application sets the stack pointer register to the top arrow,



resulting in the right-hand picture, and Dr. Memory interprets
that as a de-allocation on one large stack, then we will mark all
memory beyond the new top of stack as unaddressable. This
will result in false positive errors reported on any subsequent
access to the data in the middle or to legitimate stack entries
on the bottom stack. Even worse, false negatives are possible
when an error is made in the other direction: if a stack de-
allocation is treated as a swap, accesses beyond the new top
of stack may go undetected.

The example scenario in Figure 3 is a real situation that we
have encountered in a version of the ISIS distributed resource
manager [5]. Allocating stacks on the heap is not uncommon;
the Cilk programming language is another example.

The approach taken by existing tools, including Memcheck,
to distinguish swaps is to use a user-controllable stack swap
threshold [16]. Any stack pointer change smaller than the
threshold is treated as an allocation on the same stack,
while any change above the threshold is considered a swap.
Unfortunately, there is no single threshold that works for all
applications, and it is up to the user to set it appropriately for
a given application. However, deciding on the proper value is
not straightforward. Furthermore, a single value may not work
for all stacks within the same application.

We have developed a scheme for automatically adjusting
the threshold that removes any need for manually specifying
a value. We adjust the threshold in both directions, but as
it is much easier to detect a too-small threshold than a too-
large one, we start with a relatively small value of 36KB. For
comparison, this is about fifty times smaller than Memcheck’s
default value.

Our instrumentation that handles stack register changes
checks for absolute changes that are larger than the current
threshold. For such values, we exit our fastpath instrumen-
tation to a C routine that examines the memory allocation
containing the top of the stack and verifies whether it is indeed
a stack swap or not. We assume that no stack swap will use
a relative change, and thus avoid checking for the threshold
on many stack pointer adjustments. If the change is not a
swap, we increment a counter. If the counter exceeds a small
value (16 in our implementation), we increase the threshold,
but linearly, by one page each time the counter is exceeded.
This ameliorates performance impact from frequent large stack
allocations, while keeping the threshold small, which is safer
than having it too large. We measured our performance on
the gcc SPEC2000 [18] benchmark, which contains a number
of large stack allocations in the tens, hundreds, and even
thousands of kilobytes, and our linear increase worked well.

Dr. Memory does not know which heap allocations or mem-
ory mappings are meant to be stacks, beyond the initial stack
for each thread. Unknown stacks are identified when a stack
allocation touches valid memory: for a known stack, memory
beyond the current top of the stack is always unaddressable.
When an unknown stack is found, we do not mark the rest of
the memory region as invalid, because some applications use
a single heap allocation to store not only a stack but also data
adjacent to the stack. We instead mark the next lower page as
invalid, and repeat one page at a time for each trigger. This

heuristic avoids marking non-stack data as invalid unless the
application stack gets within a page of its allocated bounds.

On detecting an unknown stack, if its size is smaller than
our stack swap threshold, we reduce the threshold to the stack
size minus one page. The goal here is to detect a stack swap
between adjacent stacks. Typically, multiple nearby stacks
are the same size. We can still incorrectly interpret a stack
change as a stack swap if there are two adjacent stacks and
the top of each is very near the border of the other stack.
This is unlikely, however, and we have never observed it in
practice. Without either reducing the swap threshold such that
it impacts performance, or having semantic information from
the application, it is not clear how to avoid this corner case.

V. KERNEL INTERACTION

Most memory-checking tools operate on user-mode applica-
tions. While each of the application’s memory references can
be directly monitored, any memory in the application’s address
space that is read or written by the underlying operating system
kernel is invisible to the tool. Thus, each system call’s effects
on application memory must be emulated in shadow memory.
Failing to do so for memory read by system calls leads to false
negatives: uninitialized values passed to the kernel will not be
detected. Failing to emulate for memory written by system
calls leads to false positives, where the tool will complain
about uninitialized memory read by the application when in
fact that memory was initialized by the kernel. Proper system
call shadow emulation is essential to creating a usable memory
checking tool.

A. Unknown System Calls

In order to emulate each system call’s effects in shadow
memory, the type and size of each system call parameter must
be known. For Linux this information is readily available, but
this is not an easy task on proprietary systems like Windows.

Windows contains two main sets of system calls: the
ntoskernl system calls and the win32k system calls. The
former are analogous to UNIX system calls. The latter are
graphical display-related calls, as the graphics subsystem lives
in the kernel for all recent Windows versions.

The ntoskernl system call parameters have been doc-
umented, if not officially, and Dr. Memory does explicit
checking on each parameter. However, very little information
is available about the win32k system calls. For these, Dr.
Memory does not have a list of parameters for each call,
and is forced to use techniques to identify the parameters dy-
namically. We focus on avoiding false positives by identifying
output parameters.

Recall that Dr. Memory shadows both memory and reg-
isters with metadata indicating whether the application data
is allocated and initialized. We use Dr. Memory’s shadow
metadata to identify potential system call parameters. Win-
dows ntoskernl system calls have up to 17 parameters.
For win32k system calls, we check the first 24 system call
parameters and immediately ignore any that are not marked
defined. For those that are, we then look for pointers to
memory. If a parameter’s value is an address that is not marked



as unaddressable, we start scanning the shadow values from
that point forward. Because some parameters have both input
and output components, we do not stop when we hit initialized
data: we continue until we reach unaddressable memory or we
hit a maximum size, which we have set at 2KB. We then make
a copy of the original application memory. We also mark every
uninitialized byte with a sentinel value so that we can detect
kernel writes to data that happens to have the same value prior
to the system call. This is most common with zero values.

User-level architectural simulators also need to detect sys-
tem call changes so they can faithfully replay execution traces.
The typical method is to use a separate process that keeps an
identical copy of all of user-space memory [12]. After a system
call, any changes can be identified. However, memory that
happened to be the same value prior to the system call can be
ignored for the purposes of replay, while we must update our
shadow metadata for such memory. Our sentinel write allows
us to detect all changes.

After the system call, we iterate over the uninitialized bytes.
If a byte’s value no longer matches the sentinel, we mark it
as defined. If the byte does match the sentinel, we restore
it to its pre-system-call value. There is a risk of the kernel
writing the sentinel value, and a risk of races when any
of the data under consideration is thread-shared. However,
if another thread writes to the data, it will become defined
anyway. Another concern is if this is heap memory and another
thread frees the memory, but that is only likely when we mis-
interpreted a value that is not really a system call parameter:
but since most of these parameters are on the stack and are
thus thread-local variables, this should only happen with large
integers that look like pointers. These are all risks that we
tolerate.

In Dr. Memory, the scheme we have described removes 95%
of false uninitialized read reports in graphical applications
such as calc.exe on Windows. To eliminate the rest we
plan to extend our scheme to locate secondary pointers.
Additionally, there are system call changes that cannot be
detected purely by examining system call parameters as mem-
ory pointers. Some system calls write data based on a handle
or other indirect method of referring to memory. Without
semantic information on these parameters, our only solution
is to compare all of memory, which would be prohibitively
expensive for our purposes. Today we rely on explicit handling
for such cases.

VI. LEAK DETECTION

Memory leaks are a common problem with C and C++
applications, and can be difficult to identify and track down
without the help of a dedicated tool. Dr. Memory identifies
reachability-based leaks, where a leak is defined as heap
memory that no longer has any pointer to it, as opposed to
considering any unfreed memory as a leak.

A. Leak Scan

At program exit time, or any intermediate point requested
by the user, Dr. Memory suspends all of the application
threads and performs a leak scan. This is similar to a garbage

collector’s mark-and-sweep operation. Without semantic in-
formation, large integer values cannot be distinguished from
pointers, and are conservatively interpreted as pointers.

For its root set our leak scan uses the registers of each
thread as well as all non-heap addressable memory, which
includes below the top of the stack for each thread and the
data section of each library. Only pointers marked as defined
by Dr. Memory are considered. For efficiency, we also only
consider aligned pointers. We have yet to observe any loss of
precision from this decision.

Dr. Memory uses a feature called a nudge to allow the user
to request a leak scan at any point. Nudges are sent from
a separate process and notify the target application that is
running under Dr. Memory that an action is requested. On
Windows we implement nudges via injected threads; on Linux
we use signals. In each case we set fields such that the nudge
can be distinguished from a message meant for the application.
Nudges can be used to help determine roughly when the
last pointer to an allocation was lost, if the callstack of the
allocation is not sufficient to pinpoint the error in the source
code. Each nudge performs a full leak scan, and by nudging
periodically the first occurrence of the leak can be identified.

B. Types of Leaks

Dr. Memory uses the general leak classification introduced
by Purify [7] and divides all heap memory that is still allocated
at the time it does its leak scan into three categories:

1) Memory that is still reachable by the application. This
is not considered a leak. Many applications do not
explicitly free memory whose lifetime matches the pro-
cess lifetime and this is not considered an error by Dr.
Memory.

2) Memory that is definitely not reachable by the applica-
tion (at least, not by an aligned pointer to the start or
middle of the allocated block). This is called a leak by
Dr. Memory, as there is no way for the application to
free this memory: it has lost all references to it.

3) Memory that is reachable only via pointers to the middle
of the allocation, rather than the head. This is called a
possible leak by Dr. Memory. These may or may not be
legitimate pointers to that allocation. Several cases of
known legitimate mid-allocation pointers are discussed
in Section VI-C.

Each of the leak and possible leak categories is further
broken down into direct and indirect leaks. An indirect leak is
a heap object that is reachable by a pointer to its start address,
but with all such pointers originating in leaked objects. Dr.
Memory reports the number of leaks, possible leaks, and still-
reachable allocations, along with the allocation callstack for
each.

C. Possible Leak False Positives

The possible leak category is not always useful, as C++
applications can have many false positives in this category,
leading users to ignore the category altogether. There are
several C++ object layouts that result in legitimate pointers
to the middle of an allocated heap object:



• For C++ arrays allocated via new[] whose elements have
destructors, the new[] operator adds a header but returns
to the caller the address past the header. Thus, at leak
scan time, only a pointer to the middle of the heap object
exists.

• For some C++ compilers, a pointer to an instance of
a class with multiple inheritance that is cast to one of
the parents can end up pointing to the sub-object parent
representation in the middle of the allocation. We have
observed large C++ applications with tens of thousands
of possible leaks due to multiple inheritance.

• The std::string class places a char[] array in the
middle of an allocation and stores a pointer to the array.

Unlike any existing tool we are aware of, Dr. Memory
recognizes each of these classes of common mid-allocation
pointers and eliminates them from the list of possible leaks,
increasing the signal-to-noise ratio of the possible leak cate-
gory. Our identification methods do not rely on having symbol
information, but if such information is available we could use
it to augment our checks.

To identify new[], if we see a mid-allocation pointer during
our leak scan that points one size_t inside the block where
the value stored at the head of the block equals the block size,
we consider the block fully reachable and do not place it in
the possible leak category. This more-general check will also
support an application that wraps each malloc block with its
own header that stores just the size, which we have observed
in practice.

For multiple inheritance, we look for a vtable pointer at
both the pointed-at mid-allocation point and at the block
head. We assume here that the C++ implementation stores the
vtable pointer as the hidden first field, which is the case for
all compilers we have encountered. We safely de-reference
both potential vtable pointers. We first check whether these
are clearly small integers rather than pointers. This check
improves performance significantly, ruling out nearly all non-
vtable instances. If both of the two vtable pointers pass, we
then check whether each location pointed at contains a table
of functions. We ignore alignment, as Windows vtables often
point into the ILT and are not aligned; primarily we check
whether each entry points into the text section of a library or
the executable. The function pointers do not need to all point
to the same library. We simply march through the potential
table, skipping zero entries, until we find at least two function
pointers. At that point we conclude that this is in fact a vtable.
This scheme works well in practice and we have yet to find a
false positive.

An instance of the std::string class is identified by
looking for its specific layout: the mid-allocation pointer points
to a character array that follows three header fields, length,
capacity, and a reference count, at the head of the block.

D. Storing Callstacks Efficiently

Each memory leak report includes its allocation callstack.
This necessitates recording the callstack for every live al-
location, since any allocation could later be leaked. Some
applications have millions of simultaneously live allocations.

If callstacks are stored as text strings, they can average
several hundred bytes per callstack, resulting in hundreds of
megabytes or more of memory used just for callstacks.

To reduce the memory required, we use a binary callstack
encoding. Additionally, because many allocations share the
same callstack, we store callstacks in a hashtable to avoid
storing duplicate copies. Each callstack consists of a variable
number of frames which we dynamically allocate.

Each frame contains an absolute address and a module and
offset (we do not store the frame pointer stack addresses).
Since the same module could be loaded at two different
locations during the course of execution, we must store both
the name, which is a pointer into a module name hashtable
from which entries are never removed, and the offset. We pack
further using an array of names so we can store an index in
the frame that is a single byte, optimizing for the common
case of less than 256 libraries. This index shares a 32-bit field
with the module offset, which is then limited to 16MB. For
modules larger than 16MB, we use multiple entries that are
adjacent in the module name array. The hashtable holds the
index of the first such entry, allowing us to reconstruct the
actual offset. Each frame thus takes up only 8 bytes for 32-bit
applications.

Our compacted binary callstack encoding that shares call-
stacks via a hashtable uses a small fraction of the memory
required for non-shared callstacks in text format, reducing
usage on large applications from several hundred megabytes
to a dozen or so, a huge savings (see Table II).

VII. EXPERIMENTAL RESULTS

We evaluated Dr. Memory on the SPEC CPU2006 bench-
mark suite [19] with reference input sets. We omit 481.wrf
as it fails to run natively. The benchmarks were compiled as
32-bit using gcc 4.3.2 -O2. We ran our Linux experiments on
a six-core, dual-processor Intel Core i7 with 2.67GHz clock
rate, 12MB L2 cache, and 48GB RAM, running Debian 5.0.7.
For Windows we compiled the C and C++ benchmarks with
Microsoft Visual Studio 2005 SP1 and ran our experiments on
an Intel Core 2 Quad Q9300 with 2.50GHz clock rate, 6MB
L2 cache, and 4GB RAM, running Windows Vista SP1.

To compare to Memcheck, we used the latest Valgrind re-
lease, version 3.6.0. Memcheck is unable to run 434.zeusmp
and 447.dealII. The 3.6.0 release is also unable to run
410.bwaves, though by increasing VG_N_SEGMENTS in the
Memcheck source code from 5000 to 6000 and re-compiling
it succeeds. On 400.perlbench, Memcheck runs out of
memory toward the end of one of the three runs; we estimate
the total runtime as the runtime to that point.

A. Comparative Performance

We evaluated Dr. Memory on Linux where a direct compari-
son with Valgrind’s Memcheck is possible. Figure 4 shows that
Dr. Memory is twice as fast as Memcheck on average, and up
to four times faster on individual benchmarks. A faster tool
is a more usable and practical tool. Dr. Memory’s superior
performance stems from the use of fastpath kernels and the
collection of optimizations described in Section III.
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Fig. 4. The performance of Dr. Memory compared to Valgrind Memcheck [16] on the SPEC CPU2006 benchmarks on 32-bit Linux. On average, Dr. Memory
is twice as fast as Memcheck, and is up to four times faster on individual benchmarks. Memcheck is unable to run 434.zeusmp and 447.dealII.

The two tools’ base systems, DynamoRIO and Valgrind,
differ significantly in performance when executing with no
tool. DynamoRIO is several times faster than Valgrind with
no tool (Nulgrind). However, this relative performance has
little bearing when comparing the memory checking tools, for
two reasons. First, a negligible amount of time is spent in
the base system when running a 10x–20x slowdown tool. A
memory checking tool executes about 15–30 new instructions
for each instruction executed by the base system. DynamoRIO
does not make these new instructions faster. 95% or more of
execution time is spent in these added instructions: i.e., little
time is spent doing what the base system with no tool does.

Furthermore, the impact of the base system can be in the
opposite direction from what a base comparison would imply:
Valgrind’s slowdown with no tool stems from its emulation of
the application’s state, versus DynamoRIO’s mapping of the
application state directly to the native machine state. When
significant instrumentation is added, a DynamoRIO tool must
perform additional context switches beyond what a Valgrind
tool must do, because the base Valgrind system is already
doing that work. This makes the base system comparison an
invalid predictor of relative tool performance.

Like Memcheck, Dr. Memory implements per-byte shad-
owing and uses shadow propagation to avoid false positives,
unlike many tools such as Purify [7] and Intel Parallel Inspec-
tor [9] that do not propagate shadow values and thus incur less
overhead but give up accuracy as a result.

Unlike Dr. Memory, Memcheck supports per-bit shadowing,
but only switches from per-byte on an as-needed basis, which
is typically for less than 0.1% of memory accesses [13]. Few
benchmarks in our suite actually contain bitfields. Thus, the
presence of per-bit shadowing in Memcheck should have little
effect on its performance here.

B. Windows Performance
Figure 5 shows Dr. Memory’s performance on Windows.

Overall the performance is comparable to our Linux perfor-
mance. However, the different compiler and different libraries
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Fig. 5. The performance of Dr. Memory relative to native on Windows on the
SPEC CPU2006 benchmarks that can be compiled by the Microsoft Visual
Studio compiler.

can result in different performance bottlenecks and results
for the same benchmark on the two platforms. For example,
alloca is more frequently employed on Windows, requiring
a fast method of allowing its probes beyond the top of the
stack, while on Linux alloca’s performance does not matter.
The instruction mix used by the compilers differs as well.
For example, the cmpxchg8b instruction is seen much more
frequently on Windows; if not handled in the fastpath, it can
be a performance bottleneck.

C. Component Performance

Figure 6 shows the performance impact of each of the
optimizations presented in Section III-C. Using a table lookup
for addressability has a sizeable impact as it keeps partially-
undefined word references on the fastpath. Using faults for
special blocks keeps the instrumentation size small, and whole-
bb spilling reduces the number of register spills and restores
significantly. The other optimizations have less dramatic but
still significant impacts.

We have found that the sources of performance bottlenecks
for Dr. Memory can vary widely across different applications.
If enough instructions of a certain type fall into Dr. Memory’s
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Fig. 6. Performance impact of the eight Dr. Memory optimizations described
in Section III-C on the SPEC CPU2006 benchmarks. Each graph shows the
slowdown versus the fully optimized Dr. Memory that is incurred when that
optimization is disabled.

slowpath, performance will suffer. For example, 465.tonto
contains many ten-byte floating point operations. Initially these
were not handled in our fastpath, and tonto’s performance
was poor. We had not previously seen this behavior. For
400.perlbench, processing each malloc and free tends
to dominate the runtime. Other examples on Windows were
given in the previous section.

D. Memory Usage
Table II shows the memory used for storing callstacks

when using text, binary, and our compacted binary format
with and without sharing. Both sharing and a binary format
are required to avoid excessive memory consumption, and
our compacted binary encoding described in Section VI-D
reduces memory usage further. Additionally, producing a text
format takes additional time, as previously seen in Figure 6.
The most dramatic impact is on 447.dealII, which has
1.3 million simultaneously active allocations, most of which
were allocated from identical call sites, producing ample
opportunities for sharing callstacks.

Non-shared Shared
Benchmark Text Binary Binary Compacted
400.perlbench 1,871,303 442,996 474 326
401.bzip2 5 2 2 2
403.gcc 108,726 26,365 962 658
429.mcf 4 2 2 2
445.gobmk 708 177 10 5
456.hmmer 455 122 8 6
458.sjeng 4 2 2 2
462.libquantum 4 2 2 2
464.h264ref 5,592 1,408 21 15
471.omnetpp 1,415,199 331,926 910 637
473.astar 130,435 35,777 4 3
483.xalancbmk 1,205,862 290,176 329 228
410.bwaves 16 5 5 4
416.gamess 21 7 4 3
433.milc 20 6 3 3
434.zeusmp 34 10 10 7
435.gromacs 1,162 282 29 21
436.cactusADM 2,956 707 583 408
437.leslie3d 16 5 5 4
444.namd 407 120 5 4
447.dealII 3,154,396+ 785,832+ 53 38
450.soplex 67 18 18 13
453.povray 7,499 1,762 77 54
454.calculix 14,387 3,430 28 20
459.GemsFDTD 71 19 19 14
465.tonto 9,410 2,222 26 19
470.lbm 4 2 2 2
482.sphinx3 0 0 0 0

Table II. Memory usage, in KB, of callstacks used to store allocation sites
and to store reported error locations. For benchmarks with multiple runs, the
largest run is shown. The first two columns show the enormous amounts of
memory needed when non-shared text or binary callstacks are used. The third
column shows the usage of shared binary callstacks, and the final column
gives the results of our approach of shared and compacted binary callstacks.
With non-shared callstacks, 447.dealII runs out of memory and fails to
finish running.

E. Accuracy

Without our unknown system call handling in place, running
the Windows calc.exe graphical calculator results in 105
unique and 1424 total uninitialized reads reported. Using the
algorithm in Section V-A, nearly all of those false positives
are eliminated and only 4 remain. We believe we can eliminate
those as well with further work.

Without our possible leak heuristics, one large proprietary
C++ application contained 24,235 possible leak allocation
sites, each with several leaked blocks, a daunting number for a
user to analyze. After eliminating the categories of legitimate
possible leaks described in Section VI-C, Dr. Memory reported
only 6 possible leak sites in the application. For the benchmark
403.gcc, Dr. Memory reports an average of 20 possible sites
for each of the benchmark’s 9 runs, while Memcheck averages
596 possible sites.

Dr. Memory has identified several unaddressable errors in
a version of the Small Footprint CIM Broker (SFCB) [1],
including a race condition on a library unload, a use-after-
free error, and an out-of-bounds access, along with numerous
leaks in SFCB and in a version of the ISIS distributed resource



manager [5]. We have also found three uninitialized reads in
the main Cygwin library, an uninitialized read in a Windows
system library, and an uninitialized read and an out-of-bounds
memory access in Linux glibc.

VIII. RELATED WORK

Perhaps the most widely-used memory checking tool today
is MemCheck [16], built on the Valgrind [14] dynamic in-
strumentation platform. Dr. Memory’s shadow states, shadow
combination rules, and propagation are all similar to those of
Memcheck [13]. Memcheck only supports UNIX platforms. It
replaces library allocation functions, uses a single threshold for
stack swap detection, and does not distinguish false positive
possible leaks from common C++ data layouts, making its
possible leak reports more difficult to use.

Purify [7] was one of the first commercial memory checking
tools, and the first tool to combine detection of memory
leaks with detection of use-after-free errors. Purify uses link-
time instrumentation and reports reads of uninitialized errors
immediately, which can result in false positives. Purify’s basic
leak detection approach is used by both Memcheck and Dr.
Memory.

Parallel Inspector [9] is a commercial tool built on the
Pin [10] dynamic instrumentation platform that combines
data race detection with memory checking. Like Purify, it
reports reads of uninitialized errors immediately. Details of
its implementation are not publicly available.

Insure++ [15] is another commercial memory checking
tool. It supports inserting instrumentation at various points,
including the source code prior to compile time, at link time,
and at runtime, but its more advanced features require source
code instrumentation. Instrumentation at runtime is inserted
using dynamic binary instrumentation, just like Dr. Memory,
Memcheck, and Parallel Inspector, via a tool called Chaperon.
Insure++ does support delaying reports of uninitialized mem-
ory but only across copies and not other operations.

Third Degree [8] is a memory checking tool for the Al-
pha platform. It inserts instrumentation at link time using
ATOM [17]. It detects uninitialized reads by filling newly
allocated memory with a sentinel or canary value and reporting
an error on any read of the canary value.

BoundsChecker [11] monitors Windows heap library calls
and detects memory leaks and unaddressable accesses. It does
not detect uninitialized reads.

Some leak detection tools, including LeakTracer [2] and
mprof [6], only report memory that has not been freed at the
end of execution. For these tools to be usable, the application
must free all of its memory prior to exiting, even though it
may have data whose lifetime is the process lifetime where it is
more efficient to let the operating system free those resources.
Reachability-based leak detection, in contrast, uses a memory
scan that is similar to a mark-and-sweep garbage collector [3]
to identify orphaned memory allocations that can no longer be
accessed. This type of leak detection is used by most modern
memory checking tools, including ours.

IX. CONCLUSION

Memory checking tools are invaluable for detecting memory
errors in applications. However, such tools are difficult to build

due to three significant challenges: performance, accuracy,
and system dependencies. This paper presents a memory
checking tool for both Windows and Linux that addresses
these challenges. It handles undocumented Windows system
calls and the complex Windows heap API, and avoids reporting
false positive memory leaks stemming from common C++ data
layouts that fool traditional leak locating algorithms. Dr. Mem-
ory employs efficient instrumentation techniques and optimiza-
tions and out-performs the state-of-the-art Valgrind Memcheck
tool by an average of 2x. These improvements combine to
create a more practical tool. Dr. Memory is open-source and
available at http://code.google.com/p/drmemory/.
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