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Abstract

Profile-guided optimization possesses huge potential to save

costs for datacenters. Hardware performance monitoring

units enable profiling with negligible overhead and they have

been proven to be effective to help programmers find code

regions to optimize by monitoring datacenter applications

continuously on live traffic. However, these hardware fea-

tures are inflexible and often buggy, limiting the types of

data that can be gathered. Instrumentation-based profiling

can complement or replace hardware functionality by pro-

viding more flexible and targeted information gathering. Un-

fortunately, the overhead of existing instrumentation mech-

anisms prevents their use in production runs. In order to be

used in datacenters, we need a profiling mechanism to im-

pose overheads of less than a few percent, in terms of both

throughput and latency, while still generating meaningful

profile data.

This paper presents instant profiling, an instrumenta-

tion sampling technique using dynamic binary translation.

Instead of instrumenting the entire execution, instant pro-

filing periodically interleaves native execution and instru-

mented execution according to configurable profiling dura-

tion and frequency parameters. It further reduces the latency

degradation of initial profiling phases by pre-populating a

software code cache. We evaluate the performance and ef-

fectiveness of this new profiling technique on the SPEC

CINT2006 benchmark suite and two datacenter application

benchmarks. We show that it is well-suited for deployment
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to datacenters by incurring less than 6% slowdown and 3%

computational overhead on average.

Categories and Subject Descriptors D.3.4 [Programming

Languages]: Optimization, Run-time environments

General Terms Languages, Performance

Keywords Profiling, Instrumentation, Datacenters

1. Introduction

As cloud computing continues to expand, profile-guided op-

timization (PGO) on datacenter applications has the poten-

tial for huge cost savings. Single-digit performance gains

from the compiler can yield tens of millions of dollors in

savings. Isolating the execution of datacenter applications

can be complex or even impossible. One challenge of PGO

on datacenter applications is collecting profile data from the

applications running on live traffic [23]. In order to moni-

tor production runs, the profiling overhead in terms of both

throughput and latency should be kept minimal for several

reasons. First and foremost, datacenter application owners

are not tolerant of latency degradations (even at the 99th

percentile) of more than a few percent, unlike high perfor-

mance computing or other throughput-oriented applications,

because they hurt the quality of service. Second, excessive

profiling overhead can cause observer distortion that thwarts

meaningful analysis. Finally, profiling overheadmight offset

the cost savings gained with PGO.

One way to keep the profiling overhead minimal is to

exploit hardware support. For instance, specialized profil-

ing hardware such as Merten’s hot spot identification [20],

Vaswani’s programmable hardware path profiler [27], and

Conte’s profile buffer [13] has been proposed for low over-

head profiling. Furthermore, many recent microprocessor

designs have included on-chip performance monitoring

units (PMU) [16–18] containing configurable performance

counters that can trigger software interrupts for sampling.



Google-Wide Profiling (GWP) [23] has shown that PMU-

based profiling mechanisms can maintain small enough

overhead to be deployed for large datacenters monitoring

applications running on live traffic.

Although hardware profiling mechanisms incur low over-

head, they suffer from limitations. First, the possible types

of profile data are inherently defined by the features that the

underlying microprocessor supports; thus, hardware profil-

ing mechanisms are not as flexible as software-only mecha-

nisms. In addition, PMU features are often very processor-

specific, making profiling tools not portable. Lastly, as the

top design priorities are hardware validation and proces-

sor performance, performancemonitoring hardware tends to

be considered as a second class feature with the increasing

time-to-market pressures [25].

Such limitations of hardware profiling can significantly

limit the potential of PGO for datacenter applications, since

PGO systems must be aware of both what and how to op-

timize for effective optimization. Although PMUs imple-

mented in recent microprocessors so far provide quite rich

information on where to focus optimization efforts, deciding

how to optimize is a considerably harder problem. For exam-

ple, sampling the program counter (PC) at a high rate yields

enough information to detect hot code, and current PMUs

are even capable of giving finer information such as cache

miss and branch mispredict PCs. However, PMU features so

far give less attention on how to optimize.

While instrumentation-based profiling mechanisms can

provide more useful information about how to optimize the

target applications, they tend to impose higher overheads

than hardware-based mechanisms. For instance, path pro-

filing [4] is well-known to be effective for improving code

layout and superblock formation, but incurs 30-40% over-

head. Other techniques such as value profiling [8] and data

stream profiling [12] not only achieve gains of over 20% but

also cause ten- or hundred-times slowdowns during profil-

ing. Such high overheads prevent these mechanisms from

consideration for profiling even loadtests for datacenter ap-

plications.

In this work, we propose a novel instrumentation sam-

pling technique, instant profiling, that uses dynamic binary

translation. Instead of instrumenting the entire execution, in-

stant profiling periodically interleaves native execution and

instrumented execution. By adjusting profiling duration and

frequency parameters, we can keep profiling overhead un-

der a few percent, so that the framework can be used to

continuously monitor cloud computing applications running

in large scale datacenters with live traffic. We have imple-

mented the prototype framework of instant profiling on top

of DynamoRIO [6], and we evaluate the possibility of con-

tinuous profiling on real datacenter benchmarks.

Instant profiling offers the following features:

• Low computational overhead. Computational overhead

includes the cycles consumed by the application as well

as out-of-band computation like profiling and JITing.

When target programs are running natively, instant profil-

ing does not need to add any extra instructions to the pro-

grams, as opposed to previous techniques [3, 15] which

need checking code even when not profiling. Also, we

do not duplicate the original execution, unlike other prior

work [21, 29]. For these reasons, instant profiling can

keep the computational overhead minimized.

• Small latency degradation. Due to the overhead amor-

tizing characteristics of dynamic translation techniques,

end users might observe significant latency degradation

for initial profiling phases even with low sampling rates.

Instant profiling further reduces latency degradation by

pre-populating a software code cache and jumping back

to native after a predefined period.

• Eventual profiling accuracy. With sampling techniques,

we cannot avoid making errors on profile data. Since our

low overhead framework enables continuous profiling on

production runs, however, the accuracy of instant profil-

ing gets closer to full profiling with a long enough appli-

cation lifetime or enough instances. Since the most im-

portant applications consume the most cycles, they will

have the most instances, run the longest, and yield the

most profiles.

• Flexibility. Instant profiling can be applied to any type of

profiling or tracing as long as the entire execution does

not need to be monitored, since it is an instrumentation-

based profiling technique and does not rely on special-

ized hardware features. In addition, instant profiling is

portable to other micro-architectures for the same reason.

• Tuning. The profiling duration and frequency are config-

urable, making it easy to adjust the tradeoff between in-

formation and overhead.

The remainder of this paper is organized as follows. Sec-

tion 2 provides a brief explanation of dynamic instrumenta-

tion systems and DynamoRIO which we harness as a base

platform. Section 3 then presents the design and implemen-

tation details of our instant profiling framework. Section 4

describes how the framework further reduces latency degra-

dation by pre-populating its software code cache. Section 5

explores tuning tradeoffs and evaluates performance. Sec-

tion 6 discusses related work, followed by Section 7 outlin-

ing future work. Finally, we summarize the contributions and

conclude in Section 8.

2. Background

Before we delve into the details of instant profiling, we

briefly describe dynamic binary instrumentation techniques

and where extra overheads come from. Then we provide

an overview of DynamoRIO upon which we implement the

prototype framework of instant profiling.



2.1 Dynamic Binary Instrumentation

Dynamic binary instrumentation is a powerful technique for

runtime program introspection, particularly collecting pro-

file data for PGO. There are many dynamic binary instru-

mentation systems [6, 19, 22], sharing similar internal mech-

anisms. They intercept target applications’ execution, instru-

ment points of interest, place instrumented code in their soft-

ware code cache, and execute it from the software code

cache. Where and what to instrument are defined by users

(client writers) via customAPI’s. One main benefit of instru-

menting programs at runtime is the availability of a complete

picture of programs’ runtime behavior including shared li-

braries, plugins, and dynamically-generated code.

There are two major sources of overhead for dynamic bi-

nary instrumentation systems. One arises from the dynamic

instrumentation systems themselves. Whenever the target

program meets an unknown branch target, the dynamic in-

strumentation system must perform a code cache lookup,

copy the original code to the software code cache and insert

any necessary instrumentation. In order to make this process

transparent to target programs, moreover, they have to save

and restore program context. Although these costs are un-

avoidable, translation overheads can be amortized over long

running time and there have been suggested many optimiza-

tion techniques to reduce this type of overhead, e.g., direct

and indirect branch linking, trace construction, register real-

location, etc.

The other source of overhead comes from the profiling

client. For collecting profile data, dynamic instrumentation

systems insert user-defined code into application code. As

opposed to instrumentation overhead occurring only when

new code comes into the software code cache, instrumented

client code is executed every time the application code is ex-

ecuted. Thus, even fine-tuned profiling clients can impose

large overheads, continuously throughout the target appli-

cation’s execution. Furthermore, while significant progress

has been made in reducing the performance penalty of the

dynamic instrumentation itself, less attention has been paid

to user-defined profiling clients [30].

2.2 Overview of DynamoRIO

DynamoRIO [1, 6, 7] is an open source dynamic binary

instrumentation system. DynamoRIO exports an interface

for building a wide variety of dynamic tools (DynamoRIO

clients) including program analysis, profiling, instrumenta-

tion, optimization, etc. It allows not just insertion of call-

outs/trampolines, but also arbitrary modifications to applica-

tion instructions via a powerful instruction manipulation li-

brary and adaptive intermediate representation. DynamoRIO

provides efficient, transparent, and comprehensive manipu-

lation of an unmodified application running on stock operat-

ing systems (Windows and Linux) and commodity hardware

(IA-32 and AMD64).
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Figure 1. Control transfer for instrumentation sampling.

A thorough description of the internal design and imple-

mentation of DynamoRIO is outside the scope of this paper,

but is described by Bruening [6].

3. Instrumentation Sampling

We modify DynamoRIO’s control transfer for instrumenta-

tion sampling by interleaving native execution and instru-

mented execution. Unmodified, DynamoRIO initially takes

over the control from native execution when DynamoRIO’s

shared library is loaded into the target program’s address

space, and never gives it back. On the other hand, our in-

stant profiling framework gives back the control to native

program execution right after initialization. During initial-

ization, it sets up a signal handler for pre-defined profiling

start/stop signals and creates a shepherding thread. After it

starts executing the target program natively, the framework

periodically takes over and gives back the control from and

to native execution for sampling.

Figure 1 shows how control is transfered between native

execution and instrumented execution in the instant profiling

framework. The shepherding thread manages control trans-

fers by periodically sending a profiling start/stop signal to

each application thread, according to the profiling duration

and frequency parameters. Then, the registered signal han-

dler for the predefined signal transitions between native exe-

cution and instrumented execution. In order to make the in-

strumentation transparent to the target program, instant pro-

filing needs to save and restore the target program’s state

every time the control is transfered via context switch.

If the profiling start signal is delivered when the thread is

running natively, the signal handler saves the program state

and hands over the control to the dispatch unit. iThe dis-

patch unit then checks whether the current program counter

(PC) exists in the software code cache. If so, it restores the

saved program state and executes the target code from the

software code cache. If the current PC does not exist in the

software code cache it invokes the instrumentation engine to

instrument the target code region and place it in the software



code cache. Then the dispatch unit switches the context to

the software code cache.

The transition from instrumented execution to native ex-

ecution happens in a similar way. In this case, however, the

context switch can only occur in between two instrumented

fragments. A fragment is DynamoRIO’s unit of translation

and it can be either a basic block or a trace. Mapping the

code cache state back to a native state is most easily done at

the start or end of a code fragment. Thus, the signal handler

delays the context switch until the current fragment in the

software code cache finishes.

The rest of this section describes the technical issues in-

volved in making the start/stop profiling transitions lightweight

and transparent to the target program.

3.1 Context Switch

For a sampling mechanism to be effective, transitions of

start/stop profiling should be very lightweight. Otherwise,

the transitions would encroach on the overhead budget. In

order to make the transitions lightweight, our instant pro-

filing framework minimizes the operations needed for the

context switch between native execution and instrumented

execution.

The framework performs a context switch to start profil-

ing as follows: when the start profiling signal handler gets

a signal, the kernel hands over the machine context of na-

tive execution to the signal handler in the form of a sigcon-

text struct, which the handler passes to the dispatch unit af-

ter modifying a few fields To invoke the dispatch unit, the

ip register in the sigcontext is set to the re-entry point of

the dispatch unit. Then, when the signal handler returns, the

kernel gives the control to the dispatch unit. The dispatch

unit starts instrumented execution starting from the program

counter value saved from the sigcontext struct.

3.2 Temporal Unlinking and Relinking of Fragments

One of DynamoRIO’s optimizations that has a large impact

on performance is direct and indirect branch linking. Since a

context switch between the software code cache and the dis-

patch unit is expensive, DynamoRIO links branches instead

of switching context whenever a branch target exists in the

software code cache.

Although it is good for performance, the direct and in-

direct branch linking optimization can cause a problem for

sampling control. Assume a thread is running inside a loop

linked in the software code cache. When the stop profiling

signal is delivered, the signal handler sets up the control

transfer and continues running in the software code cache

since it is in the middle of a fragment. In this case, however,

the control transfer does not happen until the execution ac-

tually finishes running the loop and returns to the dispatch

unit. For this reason, the direct and indirect branch linking

optimization can cause unbounded profiling.

In order to prevent unbounded profiling, our instant pro-

filing framework temporarily unlinks the outgoing branches

of the currently running fragment when it gets the stop pro-

filing signal. For better performance, the framework needs

to re-link the branches afterward. So, it saves the unlinked

branches in a scratch-pad data structure and re-links them

when it restarts profiling.

3.3 Multi-threaded Programs

Although unmodifiedDynamoRIO seamlessly supports multi-

threaded programs, we need several special treatments due

to the structural difference between our instant profiling

framework and DynamoRIO. The key issue is how to take

over the control of all threads when we want to start pro-

filing. This is not a problem for unmodified DynamoRIO

since it takes over the control of the main thread before it

spawns any other threads, observes every system call in-

cluding thread creation, and never gives up the control of

any thread. On the other hand, our framework only takes

over the control when it is doing profiling, and does not

keep supervision when the threads are running natively.

The basic strategy that our framework takes is to force

its own signal handler for every thread and to send a profil-

ing start signal to each thread. The shepherding thread can

enumerate the thread IDs of every application thread even

when they are not created and/or running under control of the

framework, and send each thread a pre-defined signal that

can be easily configured with a parameter. Since the kernel

calls the registered signal handler when the signal is deliv-

ered, the framework can take over the control of every thread

whenever it needs to in this way.

One problematic case is when the target program tries

to mask the signal that we use or to register another han-

dler for the signal. In this kind of conflict, the simplest cir-

cumvention is to use a different signal that is not touched

by the application. For this purpose, the signal number we

use as the start/stop profiling signal can be easily config-

ured via a command-line parameter. Another solution is to

intercept those tries by slipping in our wrapper functions for

the library functions such as sigaction(), signal(), or sigproc-

mask(). In this case there still can be applications which di-

rectly call system calls (e.g., with assembly language), and

they need to be handled with ptrace. They are extremely

rare cases, however, especially for datacenter applications

which mostly use standard libraries for portability. Finally,

for the programs we have tested so far, changing the signal

was enough.

3.4 Summarizing Profile Data

In order to enable profiling clients to summarize their re-

sults, our instant profiling framework extends DynamoRIO’s

API. DynamoRIO has various API functions to register cus-

tomized instrumentation points and we add one more type of

such event.

• dr register profiling end event(function)



The function registered with this API is called by the

shepherding thread after every profiling phase. In this way

profiling clients can manage profile data. The summarizing

overhead can be hidden as it is performed in the shepherding

thread and not included in an application’s critical path.

4. Pre-populating Software Code Cache

Our instant profiling framework further reduces the latency

degradation by pre-populating its software code cache. As

mentioned in Section 1, minimizing latency degradation is

extremely important for datacenter applications as it is di-

rectly related to the applications’ quality of service. Many

systems have expected 99th percentile latencies under 10ms.

Meanwhile, using a software code cache technique amor-

tizes its translation overhead over continued reuse of trans-

lated code. This means that end users may observe latency

degradation for initial profiling phases even though we keep

average overhead very small by setting a low profiling fre-

quency. Instant profiling does not have to manifest instru-

mentation overhead to users, however, as it does not al-

ways run the programs from the software code cache. In

other words, we can hide instrumentation overhead by in-

strumenting target code in parallel while the program is run-

ning natively. This can be understood in a similar way to

prefetching into an instruction cache implemented in many

modern micro-architectures, and we call this technique pre-

populating a software code cache.

Our instant profiling framework decides which code re-

gions to instrument for pre-populating its software code

cache based on locality. When the target program is running

natively, it uses hardware performance monitoring units to

collect program counter samples. It is likely that those code

regionswith high sample counts will be executed again when

the framework starts profiling. Therefore, it pre-populates

its software code cache with the basic blocks containing the

program counter whose counts counts exceed a threshold.

4.1 Finding Basic Block Headers

Finding code regions to instrument from program counter

samples is not a trivial task, especially for processors with

variable-length instructions like IA-32/AMD64. For Dy-

namoRIO, code fragments are tagged and managed with

the program counter values of their first instructions. Given

a program counter, therefore, we need a mechanism to find

the basic block header including that program counter.

One heuristic can be backward decoding. Starting from

the target program counter, it decodes previous bytes until

a valid instruction is found. The heuristic repeats this pro-

cess until it meets a branch instruction, at which point it

takes the post-branch program counter as the basic block

header. With RISC architectures where instructions have

fixed length, backward decoding works quite well. How-

ever, the overhead is too high for architectures with variable-

length instructions. The overhead prohibits it from being

Figure 2. Traditional vs. DynamoRIO’s basic blocks.

used for datacenter applications, since our framework works

on IA-32/AMD64 processors.

Instead of the backward decoding heuristic, our frame-

work performs forward decoding. From the entry points of

text segments, it decodes consecutive instructions in order

and also records branch targets. After finishing this process,

instructions following branch instructions and branch targets

start new basic blocks. We save these basic block header

addresses in sorted order. Then, we can identify the basic

block header containing a given program counter with bi-

nary search. The overhead of initial basic block header cal-

culation can be hidden by performing it before the start of

profiling, or it can be done offline.

4.2 Affinity-based Pre-population

A given program counter sample can be in multiple basic

blocks for DynamoRIO since its basic blocks are different

from the traditional static analysis notion of basic blocks.

The example in Figure 2 shows the difference between tra-

ditional basic blocks and DynamoRIO’s basic blocks. Dy-

namoRIO considers each entry point to begin a new basic

block, and follows it until a control transfer is reached, even

if it duplicates the tail of an existing basic block.

DynamoRIO uses this notion for simplicity of code dis-

covery at runtime [6], but it can decrease the hit ratio of

software code cache pre-population. For instance, suppose

program counter 400550 in Figure 2 is sampled for pre-

population. The basic block header found by the search in

Section 4.1 will yield only 400550. For actual instrumented

execution, however, both basic blocks starting from 400545

and 400550 can be encountered.

In order to solve this problem and exploit spatial local-

ity in higher degree, our instant profiling framework adopts

affinity-based pre-population. Instead of just pre-populating

the software code cache with basic blocks containing sam-

pled program counter, the framework also instruments addi-

tional basic blocks close to those basic blocks. Starting from

the basic blocks found from program counter samples, it in-

cludes the branch targets of those basic blocks. It discovers



Figure 3. Overhead of edge profiling.

target basic blocks in a breadth-first-search-like manner to a

pre-defined depth.

5. Performance Evaluation

Instant profiling balances a tradeoff between information

and overhead. This balance can be controlled with two pa-

rameters. The first parameter, profiling duration, controls

how long one profiling phase lasts. A longer profiling du-

ration gives more information, but also incurs higher over-

head. Moreover, it is possible that end users might feel in-

termittent latency degradation during profiling phases. So

we limit profiling durations to a few milliseconds at maxi-

mum. Another parameter that affects the profiling overhead

is profiling frequency. Considering datacenter applications’

long running characteristics, our scheme of profiling a very

small portion of execution can yield arbitrarily low average

computational overhead, while still giving meaningful pro-

file data. Since most of our benchmark workloads run only

for a few tens to hundreds of seconds, however, we set pro-

filing frequency relatively high – once in a few seconds at

minimum. In these experiments, a pair of profiling duration

and frequency parameters sets how long and how often pro-

filing is performed. For example, the (2ms/4s) setting means

profiling is conducted for 2 milliseconds for every 4 sec-

onds. We compare results for (2ms/4s), (1ms/1s), (2ms/1s),

(4ms/1s), and (2ms/250ms).

5.1 Experimental Configuration

All experiments are performed on a system with a 6-core

Intel Xeon 2.67GHz processor with 12,288KB L3 cache.

The system has 12GB of memory and is running Linux

kernel version 2.6.32. We used gcc 4.4.3 to compile all

binaries with -O3 optimization.

Instant profiling is evaluated using the SPEC CPU2006

integer benchmark suite and two proprietary datacenter ap-

plication benchmarks. For the SPEC CPU2006 benchmark

suite, the floating point benchmarks are omitted because

they generally exhibit highly repetitive behavior that is not

as interesting from the perspective of profiling. In addition,

Figure 6. Effect of pre-populating a software code cache.

four integer benchmarks are omitted because our prototype

framework does not yet work for them. The datacenter ap-

plications are web search and BigTable [9]. Although each

experiment presented is the average of three repeated trials,

there still exists some degree of variability in performance

and accuracy due to the non-determinism caused by random

starting points of profiling and thread interleaving.

5.2 Edge Profiling

We choose edge profiling as a profiling client to demonstrate

the effectiveness of instant profiling, since it is widely used

and relatively simple to implement, but incurs considerable

overhead. Edge profiling is a traditional control flow profil-

ing technique for profile-guided optimization. It measures

how many times each edge (branch transition) in control

flow graphs executes, and has been the basis of path-based

optimizations that select hot paths. Although edge profiling

collects strictly less information than path profiling, Ball[5]

shows that various hot path selection algorithms based on

edge profiles work extremely well in most cases.

Figure 3 presents the overhead of our edge profiling

client, when it runs on original DynamoRIO without sam-

pling. This naive implementation has little tuning or opti-

mization, and its overheads are far larger than other opti-

mized edge profiling techniques [14]. Although there are

opportunities for optimizing the client itself, it is outside the

scope of this paper and we demonstrate the effectiveness of

instant profiling by showing how it performs even with a

naively implemented experimental client. Since the tradeoff

between information and overhead is tunable with sampling

parameters, edge profiling makes a good test case because

comparing edge profiles’ quality is well studied.

5.3 Performance Overhead

The slowdowns caused by our instant profiling framework

with the edge profiling client are shown in Figure 4. They

are calculated as the profiled execution time (wall time)

divided by the native execution time. Figure 5 also shows

the computational overheads, which is calculated with CPU



Figure 4. Execution time overhead of the instant profiling framework across five configurations of (duration / frequency).

Figure 5. Computational overhead of the instant profiling framework across five configurations of (duration / frequency).

time. For all configurations tested, the average slowdown

ranges from 1.4% to 5.9%, and the average computational

overhead ranges from 0.6% to 2.9%.

The main trend that can be observed is that increas-

ing sampling rate either by increasing profiling duration or

profiling frequency results in an increase in overhead. We

chose profiling frequency once in every 4 seconds at least,

since a few benchmarks only run about 30 seconds. For real

datacenter environments, however, applications usually run

much longer and there exist many instances of the same ap-

plication running concurrently. In production environments,

we can choose a much lower profiling frequency and expect

commensurately lower overheads.

Although instant profiling can be tuned to impose very

low average computational overhead, some of the configura-

tions caused some benchmarks to slow down by up to 25%.

There are two major locations where instant profiling adds

extra instructions. One is profiling phases of every thread,

but the durations of this type are controlled by the profiling

duration parameter. The other location is the shepherding

thread, especially the profile data summarizing phase. For

the edge profiling client we used for the experiments, the

shepherding thread summarizes and prints out profile data

to disk after every profiling phase. While this overhead can

be hidden for most benchmarks since it is not in the applica-

tion’s critical path, it can cause resource contention resulting

in slowdowns. Although it is not yet clear, in our edge pro-

filing case we think the resources that cause the slowdown

are the data cache and load store queue. The two datacenter

applications have larger working set size than SPEC bench-

marks, and our edge profiling client traverses edge counters

after every profiling phase. This increases the pressure on the

data cache. Also, we use atomic increment instructions to

modify edge counters for the datacenter benchmarks, since

they are highly multi-threaded and non-atomic increments

can cause data races on the counters in this case. This can

impose substantial contention on the load store queue. As

we can see with the bars where profiling frequency is 4 sec-

onds, however, even the overhead caused by the resource

contention of naively implemented profiling clients can be

kept small with proper parameter settings. Moreover, we ex-

pect this overhead would go further down with practical pro-

filing frequency in real datacenter environments.

We also examine how pre-populating a software code

cache can reduce latency degradation. Figure 6 shows the cu-

mulative number of samples with andwithout pre-population,

for the web search benchmark with the (4ms/1s) setting. As

can be observed in the graph with small slope phases, instru-

mentation overhead to populate the software code cache can

result in a small number of samples, and thus more latency



Figure 7. Edge profiling accuracy of the instant profiling framework across five configurations of (duration / frequency).

degradation, for initial profiling phases. Pre-populating a

software code cache reduces such degradation by decreas-

ing the software code cache miss rate.

5.4 Profiling Accuracy

The accuracy of the edge profiling client can be ascertained

by comparing the sampled profile with the profile collected

with full instrumentation. We adopt a method similar to

Wall’s weight matching scheme [28]. We define edge pro-

filing accuracy as

Accuracy =
(MaxError − Error)

MaxError
× 100(%) (1)

Error =
∑

e∈Edges

|freqfull(e)− freqsampled(e)| (2)

In the second equation, freqfull(e) and freqsampled(e)
represent relative frequencies of edge e in a fully instru-

mented profile and a sampled profile, respectively. Relative

frequency is defined as the number of times that an edge

is taken divided by the number of times any edge in the

profile is taken. For the worst case results where edges are

biased the opposite way, this error sums up to 2, defining

MaxError as 2.

The profiling accuracy of our instant profiling framework

for edge profiling is shown in Figure 7. For all configurations

tested, the average accuracy ranges from 67-81%, and many

of the benchmarks achieve about 90% accuracy.

Despite many sources of noise, we can observe the gen-

eral trend of increasing accuracy as profiling duration or pro-

filing frequency increase. The more samples the framework

collects, the closer the profile data gets to full instrumenta-

tion.

This can also be seen in Figure 8, which shows how the

average accuracy changes as the number of profiling phases

increases for two datacenter application benchmarks with

(2ms/250ms) parameter setting. In the graph, although the

curves are not strictly monotonic, we can see the accuracy

generally goes up as more samples are collected.

Although the edge profile accuracy of our framework

reaches 90% for many of the benchmarks, some benchmarks

Figure 8. Asymptotic edge profiling accuracy.

such as BigTable and gcc show very low accuracy. The main

reason for the low accuracy is that our framework could

not collect enough samples as the execution time of these

benchmarks is too short. For real datacenter environments,

however, having low overhead is paramount and it can be

tuned to collect profile data that would yield accuracy that is

actionable with PGO.

6. Related Work

Inspired by the Digital Continuous Profiling Infrastructure

(DCPI) [2], Google-Wide Profiling (GWP) [23] demon-

strates continuous profiling is possible for datacenter appli-

cations runningwith live traffic. AlthoughGWP also collects

some lightweight callstack-based profiles through special-

ized libraries, it mainly relies on performance monitoring

units (PMU) supported by recent microprocessors [18] to

collect system-wide profiles with low overhead. The types

of profiles GWP collects, therefore, are limited to the ones

that either PMUs support or can be collected with special-

ized libraries. Our work tries to extend GWP for collecting

more general profiles which can be gathered only through

instrumentation. These types of profiles will enable more

profile-guided optimizations (PGO) by providing profiles



that can help figure out not only ”what to optimize” but also

”how to optimize.”

Dynamic instrumentation tools such as DynamoRIO [6],

Pin [19], and Valgrind [22] help instrument an application

and collect general profiles of full execution. Even for simple

profiles, however, the overhead of instrumenting an entire

execution is prohibitive and infeasible to be deployed on

datacenter applications running with live traffic.

One way to reduce the overhead of profiling is sam-

pling, as several instrumentation approaches have demon-

strated. Among them, the Arnold-Ryder instrumentation

framework [3], implemented in the Jalapeno JVM, signif-

icantly lowers instrumentation overhead by sampling bursts

of execution. It creates two versions of each procedure, one

for checking and the other for actual profiling. The checking

version counts how many times it is executed at procedure

entries and loop back edges, and transitions to the profiling

version if the counter reaches some pre-defined value. The

profiling version collects an intra-procedural acyclic trace,

resets the counter, and transitions back to the checking ver-

sion. Bursty Tracing [15] extends the Arnold-Ryder frame-

work for longer inter-procedural traces and further reduces

the overhead with a few optimizations. In addition, Bursty

Tracing is applied to IA32 binaries using the Vulcan binary

rewriting tool, instead of Java bytecode.

Instant profiling is partially inspired by the Arnold-Ryder

framework and Bursty Tracing. Instead of instrumenting all

execution for checking, however, it does not instrument any

code when it is not profiling. This is because even simple

checking instrumentation imposes prohibitive overhead for

datacenter applications. For example, even without any pro-

filing client, the Arnold-Ryder framework results in instru-

mentation overhead of 6-35%, and Bursty Tracing lowers

it to 3-18% [15]. On the other hand, instant profiling im-

poses less than 10% of computational overhead with a naive

implementation of edge profiling. Unlike Arnold-Ryder or

Bursty Tracing, moreover, instant profiling will incur nei-

ther latency degradation nor computational overhead while

it is not profiling. Also, instead of managing a duplicate copy

of every code region, instant profiling only JITs things it

will likely need. Ephemeral Instrumentation [26] also takes

a similar sampling approach to Bursty Tracing, but it is non-

trivial to extend Ephemeral Instrumentation for many pro-

file types because it uses branch patching; only information

available at the branch can be recorded and it is difficult to

find extra registers for architectures like x86. Conversely,

instant profiling is flexible and not limited to any specific

profile type. Finally, phase-guided profiling techniques [24]

can help sampling-based profiling methods, including in-

stant profiling, maintain higher accuracy while keeping the

overhead low.

Another vein of previous work to reduce profiling over-

head is to exploit parallelism for profiling. As the micro-

architectural trends move toward massively multi-core pro-

cessors, Shadow Profiling [21] and SuperPin [29] aim to

leverage the abundance of extra hardware. Shadow Profiling

runs the original program uninstrumented in parallel with in-

strumented slices to perform profiling. SuperPin uses a sim-

ilar approach, but tries to deterministically replicate full ex-

ecution by creating slices of execution between each sys-

tem call. They both exploit modern kernels’ copy-on-write

mechanism by forking new processes for profiling. They sig-

nificantly reduce the slowdown caused by profiling since the

original process is not instrumented. However, SuperPin is

not deployable for datacenters as it at least doubles resource

contention, especially CPU utilization and memory band-

width. Also, virtualizing fork for multi-threaded programs

is very challenging to implement robustly and their initial

implementations only support single-threaded programs.

PiPA [30] also exploits parallelism but in a different way.

Instead of profiling in an extra process, it performs profil-

ing in the same thread to produce compact profiles, and uses

multiple threads to pipeline processing and analyzing of pro-

file data. PiPA is particularly effective for the types of pro-

filing that need complicated post-processing such as cache

simulation.

There have been suggested many techniques specialized

for other types of profiling. Ball [4] proposes techniques for

path profiling. Calder [8] suggests an optimization to turn

off profiling by realizing profile data is converging for value

profiling. Chilimbi [11] proposes a compact representation

for memory stream profiles. Instant profiling is orthogonal

to these profile-specific techniques including PiPA, and they

can be used to further improve the overhead.

7. Future Work

Since instant profiling does not need to run the target pro-

gram from the software code cache all the time, further dy-

namic optimization for profiling code is possible in paral-

lel. Bruening [7] has shown that dynamically applying op-

timizations such as redundant load removal, strength reduc-

tion, and indirect branch dispatch can yield substantial im-

provement, even for binaries already highly optimized with

a static compiler. As optimizing instrumented code is diffi-

cult for client writers, we expect there would be potential to

improve performance even more for dynamic optimization

on profiling code.

Another realm of research we want to explore is how

to leverage more detailed profile data for feedback-directed

optimization (FDO) on datacenter applications. Although

Chen [10] presented how hardware event samples can be

used for FDO of general programs and GWP [23] profiles

have provided performance insights for datacenter applica-

tions, not much has been studied about other applications of

FDO on datacenter applications. As instant profiling enables

various types of profiles to be collected continuously from

datacenters, we expect this information to contribute to im-

proving the performance of cloud computing.



8. Conclusion

We introduce instant profiling, a novel approach to reduce

the overhead of instrumentation-based profiling for datacen-

ter applications. The technique works by executing instru-

mented profiling code from a software code cache for only a

short profiling duration. For normal execution phases, the

original binary runs natively without any instrumentation.

We further avoid possible latency degradation for initial pro-

filing phases by pre-populating the code cache. The proto-

type framework of instant profiling is built on top of Dy-

namoRIO, and it is evaluated on the SPEC CPU 2006 inte-

ger benchmark suite and two datacenter application bench-

marks. We show that the overhead of profiling in terms of

both throughput and latency can be kept to acceptable lev-

els for continuous profiling of live datacenter applications.

Furthermore, we have shown that sampling-based continu-

ous profiling can yield asymptotically accurate profiling re-

sults with negligible overhead by collecting profile data over

many instances or a long time period.
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