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Abstract

Concurrent programs are becoming common, while testing techniques that can adequately
test such programs are not widely available. Due to the nondeterministic nature of con-
current programs, program errors resulting from unintended timing dependencies can be
extremely difficult to track down. We have designed, proved correct, and implemented a
testing algorithm called ExitBlock that systematically and deterministically finds such er-
rors. ExitBlock executes a program or a portion of a program on a given input multiple
times, enumerating meaningful schedules in order to cover all program behaviors. Other
systematic testers exist for programs whose concurrent elements are processes that run in
separate memory spaces and explicitly declare what memory they will be sharing. Exit-
Block extends previous approaches to multithreaded programs in which all of memory is
potentially shared. A key challenge is to minimize the number of schedules executed while
still guaranteeing to cover all behaviors. Our approach relies on the fact that for a pro-
gram following a mutual-exclusion locking discipline, enumerating possible orders of the
synchronized regions of the program covers all possible behaviors of the program. This the-
sis presents ExitBlock and its correctness proof, describes its implementation in the Rivet

virtual machine, and demonstrates its ability to detect errors in actual programs.

Thesis Supervisor: John Chapin

Title: Assistant Professor of Electrical Engineering and Computer Science






Acknowledgments

This research was supported in part by the Defense Advanced Research Projects Agency
under Grant F30602-97-2-0288. Additional support was provided by an equipment grant

from Intel Corporation.

The Rivet Virtual Machine is a project of the Software Design Group at the Laboratory
for Computer Science at MIT. Like all large projects it is the result of a team effort.
Contributors to the project (besides myself) have included John Chapin, Brian Purville,
Tan Schecter, Gong Ke Shen, Ben Walter, and Jon Whitney. It has been a pleasure working
with all of them. Other than Rivet’s thread scheduler, extra fields, and checkpointing, all
of the work on Rivet discussed in this thesis is joint work with other members of the Rivet

team.

My implementation of the Eraser algorithm was modeled on Delphine Le Cocq’s implemen-

tation for Kaffe.

I would like to thank Daniel Jackson and Martin Rinard for taking the time to answer my

questions regarding related work in the field.

I would like to thank my thesis advisor, John Chapin, for all of his advice, encouragement,
and constructive criticism. He has always been available and willing to discuss anything,

and his enthusiasm is refreshing.

A warm thank—you to Barbara Cutler for making me start writing this thesis early, for her

help in making my figures readable, and for her help in proofreading.






Contents

1 Introduction 11
1.1 Objectives . . . . . . . . o e e 13
1.1.1 Example Target Program . . . ... ... ... .. .......... 14

1.2 Related Work . . . . . . . . . . 16
1.21 Model checking . . . . . . . . ... Lo e 17

1.2.2  Static Analysis . . . . . . . . ... oL 18

1.2.3 Nondeterministic Testing . . . . . . ... .. ... ... ....... 19

1.2.4  Specialized Domain Testing . . . . . . .. ... ... ... ...... 21

1.2.5 Deterministic Testing . . . . . ... ... ... ... ... .. 21

1.2.6 Behavior-Complete Testing . . . . . . . . ... ... ... ...... 22
1.2.7 Summary of Related Work . . . . . ... ... ... .. ... .... 23

2 Systematic Testing Algorithms 25
2.1 Testing Criteria . . . . . . . . . . . . e 25
2.1.1 Mutual-Exclusion Locking Discipline. . . . . . .. ... ... .... 26
2.1.2 Finalization . . . . . . . . ... L 28
2.1.3 Terminating Threads . . . . . . . . . ... ... ... ...... 30

2.2 Testing Algorithms Overview . . . . . . .. ... ... ... ... ...... 31
2.3 The ExitBlock Algorithm . . . .. ... ... ... ... ... ... 33
2.3.1 Thread Operations . . . . . . . . . . ... e 38
2.3.2 Number of Schedules Executed by ExitBlock . . ... ... ... .. 41
2.3.3 Correctness Proof for ExitBlock . . ... .. ... ... ....... 42

2.4 The ExitBlock-RW Algorithm . . . . . ... ... ... .. ... ....... 49
2.4.1 Number of Schedules Executed by ExitBlock-RW . . . . .. ... .. 51
2.4.2 Correctness Proof for ExitBlock-RW . . . ... .. ... ... .... 53



2.5 Detecting Deadlocks . . . . . . .. ... o o 54

2.5.1 Lock-Cycle Deadlocks . . . .. ... . ... ... ... ........ 54
2.5.2 Condition Deadlocks . . . . . . ... ... ... .. L. 58
2.5.3 Correctness Proof for ExitBlock-DD . . . ... .. ... ....... 62
2.6 Enhancements . . . . . . . . . . ... e e 65
Implementation 67
3.1 Rivet Virtual Machine . . . . . . .. . .. ... o Lo oo 68
3.1.1 Performance of Rivet . . . . . . .. . ... ... .. L. 69
3.1.2 Limitationsof Rivet . . . . .. ... ... ... ... ... ... 71
3.2 Eraser . . . . . ... e e e e 72
3.3 Tester . . . . . L e e e e e 74
3.3.1 Implementation . . . . . . ... ... ... ... ... .. 74
3.3.2 Deterministic Replay . . . . . ... ... ... 0oL 7
3.3.3 Performance . ... ... ... ... 78
3.34 Future Work . . . . . . . . .. 79
Results 83
4.1 Performance . . . . . . . . ... 83
4.2 SplitSync . . . . .. e e 85
4.3 NoEraser . . . . . . . . . . e e e e e e e e 89
4.4 Deadlock . . . . . . e e 89
4.5 Deadlockd . . . . . . . L e 89
4.6 DeadlockWait . . . . . . . . . L 93
4.7 BufferIf . . . . . e e 93
4.8 BufferNotify . . . . . . . .. . 95
4.9 Summary . ... .. e e e e e e e e e e 99
Conclusions 107
Rivet Implementation 109
A.1 Architecture Overview . . . . . . . . . . ... 109
A.2 Class and Object Representation . . . . ... ... ... .. ......... 111
A.2.1 Generic Representation . . .. ... ... ... ... ... . 112



A.2.2 Native Representation . . . . . ... ... ... ... ... 113

A3 Imterpretation . . . . . . . . ... 118
A4 ToolInterface . . . . . . . . . . e 120
A41 FlowofControl . . . . . . .. ... . 121
A42 Performance . ... ... ... 123

Ab ExtraFields. . . . . . . . L 125
A6 Checkpointing . . . . . . . . . . L e 127
A.6.1 Checkpointing Algorithm . . . .. . ... ... ... ... ... .. 128
A.6.2 Checkpointing Implementation . . . ... ... .. ... ... .... 132
A.6.3 Performance of Checkpointing . . . . . .. ... .. ... ... .. .. 139
A.6.4 Limitations of Checkpointing . . . . ... .. ... ... ....... 143
A.6.5 Alternative Checkpointing Schemes . . . . . . . ... ... ... ... 144

A.7 Deterministic Replay . . . . . . . ... .. 145
A8 Limitationsof Rivet . . . . .. . ... ... L oo 147
Bibliography 149



10



Chapter 1

Introduction

Concurrency is often necessary in implementing systems that receive and react to multiple
simultaneous requests. Nearly all web servers, database servers, and operating systems ex-
hibit concurrency. In addition, applications that utilize graphical interfaces (web browsers,
word processors, Java applets) often use concurrency. Concurrency is increasingly used for
applications with high reliability requirements (such as air-traffic control software).

Concurrent programs are more difficult to test than sequential programs. Traditional
testing techniques for sequential programs consist of test suites that simply run the target
program on different sets of representative inputs. Such tests are likely to cover only a
small fraction of the possible execution paths of a concurrent program. This is due to the
nondeterministic nature of concurrent programs: merely controlling the program’s input is
not enough to control the program’s behavior. We define a particular program execution’s
behavior to be the set of externally visible actions that the program performs during its
execution.

A concurrent program consists of components that execute in parallel. These com-
ponents are of two varieties: processes, which run in separate memory spaces, and threads,
which all share the same memory space. Different orders of the components’ actions with
respect to one another may result in different program behaviors; the resulting erroneous
behaviors are called timing—dependent errors. The order of components’ actions is often
nondeterministic due to asynchronous input or interrupts or simply a nondeterministic
scheduler. The scheduler is the operating system or library component that determines at
run time the actual order of execution, or schedule, of the processes or threads. Even if the

schedule is deterministic for a particular scheduler executing the program, it is possible and
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indeed likely that a different scheduler’s execution of the program will result in a different
schedule.

The potential presence of timing—dependent errors and nondeterministic scheduling
means that the fact that a concurrent program passes a traditional test suite says little
about whether it will always function properly wherever executed. Even when a timing—
dependent error is found, there is no guarantee that the erroneous behavior can be repeated
by re-executing the program with the same input, making debugging concurrent programs
also very difficult.

In this thesis we describe a practical algorithm for enumerating the possible behav-
iors of a section of a multithreaded Java program, for a given input. By systematically
exploring a concurrent program’s behaviors, all erroneous behaviors can be found; further-
more, a particular schedule leading to an error can be recorded and replayed. We have built
a systematic tester that implements this algorithm. Our tester is implemented in Java on
top of the Rivet Virtual Machine, a Java virtual machine built by our group. Currently
the tester can execute over 80 schedules per second and can test small execution regions
(consisting of two to four threads with perhaps thirty or fewer synchronized regions each)
in a matter of minutes. This needs to improve in order to be able to test larger programs;
we discuss how to achieve this in Chapter 5. We show that the tester finds common mul-
tithreading errors that are often difficult to detect; for example, errors that occur only in
certain orderings of modules that are individually correctly synchronized, or using an if
instead of a while to test a condition variable.

This thesis is organized as follows. The rest of this chapter details the specific
objectives of the systematic tester and describes related work. Chapter 2 describes the
algorithms used by the systematic tester and proves their correctness. Chapter 3 describes
the Rivet Virtual Machine in brief, and the implementation of the tester. Chapter 4 presents
the results of running the tester on a number of sample programs. Chapter 5 summarizes the
work and discusses future improvements. Finally, Appendix A discusses the implementation

of Rivet in detail.
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1.1 Objectives

Our goal was to build a tool that could systematically enumerate all possible behaviors
of a section of a multithreaded Java program, for a given input. The ubiquity of Java
programs utilizing graphics and user interfaces combined with Java’s easy—to—use threading
and synchronization mean that quite a few Java programs are multithreaded, making such
a tool very useful.

One way to find all behaviors is to force the program through all possible schedules of
its processes or threads (in our case, threads). The problem with this is that the number of
schedules increases exponentially with program size so quickly that testing even very small
program sections is intractable. However, not all schedules produce different behaviors. By
identifying behavior—equivalence classes of schedules and executing as few members of the
same class as possible (only one member of each class is necessary to cover all program
behaviors) we can reduce the number of schedules enough that we can test usefully sized
program sections.

Our tester uses this idea to systematically enumerate the behaviors of a multi-
threaded Java program that meets certain requirements on a given input. The requirements
are detailed in Section 2.1; in brief, they are that the program follows a mutual-exclusion
locking discipline, that its finalization methods are “well-behaved,” and that all of its threads
are terminating. The tester requires no separate model or specification of the program and
does not require the source code to be available — it does its testing dynamically by running
the actual program.

The completeness of the enumeration is defined in terms of assertion checking. The
guarantee is that if there is some execution of a program on a given input that leads to an
assertion failure, the tester will find that execution. Since any observable program behavior
can be differentiated from all other behaviors by assertions, the tester effectively guarantees
to execute all behaviors of a program. This allows a user to detect all erroneous behaviors.
In addition, the tester detects deadlocks; it provides a guarantee to find a deadlock if one
exists.

The exponential increase in the number of schedules with program size means that
the tester cannot test entire programs in a reasonable amount of time (a few hours). Com-

bining the tester with a debugger, however, will allow a user to systematically test a program
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from an execution point that the user believes is just prior to the part of the program that
needs to be tested. Our group is building a debugger that will be integrated with the tester.

The tester will generate tracing information that can be used to replay specific
schedules. The tester could be run overnight and in the morning all schedules leading to

assertion failures or deadlocks could be replayed and examined.

1.1.1 Example Target Program

As an example of a simple program exhibiting one sort of concurrency error that the system-
atic tester could help find, consider the sample Java program SplitSync shown in Figure
1.1. SplitSync creates two threads that each wish to increment the field x of the variable
resource. The Java synchronized statement limits its body to execute only when the
executing thread can obtain the lock specified. Thus only one of the two threads can be
inside either of the synchronized statements in the program at one time.

The way in which the threads execute the increment of resource.x is very round-
about; however, it is representative of a common class of errors in large systems in which
the processing of a resource is split between two modules. The intention is that no other
module can access the resource while these two modules (call them A and B) are processing
it. Module A acquires the resource (via a lock) and performs the first stage of processing
that resource. Wishing to let module B finish processing the resource, A releases the lock.
Module B immediately grabs the lock and continues processing the resource. However, some
other module could acquire the resource and modify it after A releases the lock but before
B obtains it, violating the invariant that the resource is never seen in a partially processed
state by anyone but A and B.

In a similar manner, SplitSync incorrectly synchronizes access to the shared vari-
able resource by allowing one thread’s increment of resource.x to be interrupted by the
other thread. This is a race condition: the two threads could both set y to the old value of
resource.x, and then both set resource.x to be y+1, resulting in one of the increments
being lost and an incorrect final value for resource.x.

A traditional test suite might never find this bug because the thread scheduler of its
Java virtual machine may never perform a thread switch while either thread is between the
two synchronized blocks. Even if the bug is found, it may be very difficult to duplicate. A

user of the code could have a different scheduler that switches threads more often, and so
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public class SplitSync implements Runnable {
static class Resource { public int x; }
static Resource resource = new Resource();

public static void main(String[] args) {
new SplitSync(Q);
new SplitSync();

}

public SplitSync() {
new Thread(this) .start();

}

/** increments resource.x */
public void run() {
int y;
synchronized (resource) { // A
y = resource.x;
}
synchronized (resource) { // B
// invariant: (resource.x == y)
resource.x =y + 1;

Figure 1.1: Sample Java program SplitSync illustrating an error that our tester can help
find. Although all variable accesses in this program are correctly protected by locks, it
contains a timing—dependent error. By splitting the increment of resource.x into two
synchronized statements, an error will occur if the two threads are interleaved between
the synchronized statements. Both threads will read the original value of resource.zx,
and both will then set it to one plus its original value, resulting in the loss of one of the
increments.
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the behavior the user observes could be quite different from the results of a traditional test
suite. The systematic tester would be able to find the bug by systematically enumerating
schedules of the program.

This example shows that it can be difficult to test even small concurrent programs

with traditional test suites. We now discuss other methods of testing concurrent programs.

1.2 Related Work

There is a large body of work in the general area of testing concurrent programs. It can
be divided into categories based on five criteria. Table 1.1 on page 24 classifies the related
work discussed in this section into these criteria.

The first criterion is the sorts of errors that are detected. In testing a program,
one would like to ensure that for every input the correct, or desired, output is always
generated and that no incorrect output is ever generated. There are several ways to do
this; the most common is to compare the actual output observed with the desired output.
Because we may be interested in testing a section of a program that contains no output,
let us generalize and say that in testing a program we would like to state some assertions
or invariants about the program and have the tester detect violations of those assertions or
invariants. Since assertions about output can be made, detecting assertion violations can
detect every error that comparing outputs can detect. In addition to detecting program-—
specific errors, detecting common concurrency errors can be very useful. Deadlocks, data
races, and starvation are all commonly looked—for conditions. Focusing on a single class of
errors can achieve greater efficiency and better guarantees on finding all such errors with no
false alarms. Our systematic tester checks for assertion violations and detects deadlocks.

A second criterion is whether a testing method checks that a program has some
property for all inputs or merely tests a program on one input. With the latter, test cases
need to be generated that cover all inputs on which the program should be tested. Our
tester tests a program for a single input. (See Section 1.2.7 for a discussion of test case
generation for use with our tester.)

A third criterion is what guarantee a tester provides that the errors it finds are all
of the errors present in the program. A tester that certifies its results are complete and

considers all possible inputs (the second criterion) is called a verifier. The systematic tester
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guarantees its results but considers only one input, so it is not a verifier.

A fourth criterion is whether the tester works on the actual program or requires a
specification or model of the program. Our tester works on the program itself.

Fifth and finally, we can classify testers based on whether they perform static anal-
ysis or actually run the program to be tested. The systematic tester runs the program.

We now survey the field of concurrent program testing.

1.2.1 Model checking

Model checking tools, or model checkers, verify properties of models of concurrent systems.
These models are expressed in special-purpose modeling languages. Model checkers typ-
ically enumerate all reachable program states through the model and check properties of
those states. They are verifiers — that is, they certify that the model has certain properties
for all inputs. Inputs are typically not handled separately, but are considered implicitly by
examining all state transitions of the model.

Model checkers view the task of finding the reachable program states as state—
space exploration. The state space of a program is the set of all program states. Model
checkers find the possible paths through the state graph of a program; the graph’s nodes
are program states, so following possible transitions between states leads to the set of
reachable states. The fundamental challenge of exploring the state space of a concurrent
program is the excessive number of paths. For a deterministic sequential program with no
concurrency there is only one path for any given input. In contrast, concurrent programs’
potential schedules lead to an exponential explosion in the number of possible paths. Even
for concurrent programs of moderate size, testing every single path is usually infeasible.
Thus model checkers must trim the search space by identifying paths through the graph
that are equivalent in terms of their effect on program behavior, and follow as few paths as
possible from each set of equivalent paths.

State-space caching algorithms [GHP95] are one method for pruning the number of
paths that must be searched. By remembering previously visited states, a model checker
can identify paths that overlap and avoid searching the same path segment more than once.

Model checkers utilizing state—space exploration have been shown to be effective in
verifying many aspects of models of concurrent systems, including checking for violations of

user—provided assertions or invariants and for finding problems such as deadlocks. Unfor-
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tunately, they are restricted to verifying properties of a model’s abstraction of the system.
These verifications provide no proof that an implementation of the system satisfies those
properties.

Our objectives were to build a tester that operates on an actual program and does
not require a model of the program to be built. This means that model-checking technology
cannot be directly applied to our problem. State—space exploration of an actual implemen-
tation of a system is more challenging than exploration of a model’s state space. A model
specifies exactly what information defines a program’s state; the brevity of this information
leads to a manageable number of states, which can each be given a unique identifier. These
identifiers can be used in the detection of previously seen states for the purpose of path
pruning (e.g., state-space caching). In contrast, an arbitrary program’s state is defined by
the values of all variables that could influence the behavior of any of that program’s com-
ponents. This is usually more information than can be encoded in a way that allows rapid
identification of previously—visited states. Thus a tester that attempts to explore the state
space of a program cannot make use of caching or other methods of pruning that require

state identification.

1.2.2 Static Analysis

Static analysis of a program involves deducing properties of the program by examining its
source or object code. These approaches are limited in what aspects of the program they
can verify in reasonable amounts of space and time. Attempts to emulate the behavior
of the program on all possible inputs typically end up consuming far more resources than
actually running the code on real inputs.

Many static analysis tasks have been shown to be intractable [Tay83]. Indeed, static
analysis techniques for detecting concurrency errors must act on an approximation of the
reachable program states. In syntax—based static analysis, a flow graph is constructed for
each concurrent component of the program. This flow graph is very simplified, containing
only synchronization and branch behavior. Using these flow graphs, a master graph of
the concurrency states of the program can be built. These states contain synchronization
information but no data values. Various concurrency errors such as deadlocks can be de-
tected by examining this master graph. However, the approximations made often result in

the master graph containing states that are actually unreachable (by ignoring data values,
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branch predicates cannot be predicted), leading to spurious error detection.

Another type of static analysis is symbolic execution. Symbolic execution builds
flow graphs that preserve as much data value information as possible, in order to compute
branch predicates. Data races can be detected in the resulting master graph. However,
because it has to consider all possible data values, the exponential explosion is tremendous,
greatly limiting the applicability of symbolic execution.

Attempts have been made to combine syntax—based static analysis with symbolic
execution [YT88]. The syntax—based static analysis directs the symbolic execution to try
only the (relatively) few paths that the static analysis produces, while symbolic execution
prunes the unreachable states from the static analysis results. This has had some successes.
However, all static analysis suffers from the intractability of accurately analyzing program
execution paths statically. These methods work only on certain types of programs. The
presence of pointers or heap references in a program (especially in a language that is not
strongly-typed) causes great loss of accuracy since static analysis cannot always identify
the identity of objects if they are subscripted by variable expressions or referred to through
a chain of references.

Thus even though static analysis can be successful in detecting deadlocks and data
races, it cannot detect arbitrary assertion violations. Our tester is purely dynamic. We
have found, however, that we could benefit from some static analysis information. This is

discussed in Section 2.6.

1.2.3 Nondeterministic Testing

Nondeterministic testing of a program involves selecting inputs as test cases and for each
input simply running the program multiple times. The idea of this repeated testing is
that by running the program repeatedly, more of the possible schedules of the processes or
threads that make up the concurrent program will be executed, increasing the chance that
timing—dependent errors will be found. Random delay statements can also be inserted into
the code to vary the timing of each run, which further increases the chance that timing-
related conditions will be reached.

Nondeterministic testing may (and is likely to) end up executing the same schedule
many times. Also, there is absolutely no guarantee that all behaviors will be covered.

One method of attempting to solve this problem is to allow the user control over the
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scheduler, letting him or her vary the scheduling of each run. Because there are far too
many schedules to try them all, the user must select those that he or she believes will lead
to different behavior. Like the random delay statements, since this is not systematic there
are no guarantees of complete coverage.

Generating test cases for nondeterministic testing of concurrent programs is very
different from generating test cases for sequential programs. Inputs should be selected based
not only on how representative they are of real inputs and their effect on program output
but also on their influence on the scheduling of the program’s concurrent components.
Much work has been done in this field, both in generation of test cases [KFU97] and in
evaluating coverage and quality of test cases [F+96]. Many test case generators require
separate specifications of the program to be tested in order to work, since they need more
information than can be gleaned statically from the program itself. Our systematic tester
greatly simplifies the generation of test cases. This is discussed in Section 1.2.7.

Even when nondeterministic testing identifies an erroneous program behavior, find-
ing the bug can be very difficult. For one thing, standard debuggers can only debug one
process, so separate, non—communicating debuggers must be used on a multi—process pro-
gram. Also, duplicating the error itself can be a challenge. For a sequential program,
simply re—executing the program under a debugger will duplicate the error and allow it to
be examined. However, re—executing a concurrent program may not duplicate the error
due to nondeterminism. As mentioned earlier, our systematic tester can record and replay
schedules that it executes. The ability to re-execute a program in exactly the same manner
in which it was first executed is called deterministic replay. The Rivet Virtual Machine pro-
vides the tester with this ability (see Section A.7). Related work includes a modified Java
virtual machine that provides deterministic replay of multithreaded Java programs [CH98],
an incremental checkpoint/replay system [NW94], and event history debugging [MHS89].
Event history debugging records the event history of a program at run time and allows for
browsing and replay of the program’s schedule. However, if a user found an error while ex-
ecuting outside any of these tools, he or she would have to repeatedly execute the program
in the tool’s environment until the error showed up again. The user needs to execute our
tester only once to find the schedule that led to the error.

Nondeterministic testing also includes other testing methods in which each run can-

not be repeated deterministically. There are tools that detect classes of concurrency errors
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but are nondeterministic. One example is Eraser [S+97], a dynamic data race detector.
Eraser assumes that programs follow a mutual-exclusion locking discipline wherein each
shared variable is protected by a set of locks that is held consistently when that variable
is accessed. The tool runs the program on some input and detects cases where a vari-
able is accessed with an inconsistent lock set (see Section 2.1.1 for a full description of the
Eraser algorithm). However, the tool cannot guarantee that no data races are present since
the program execution is nondeterministic (see Figure 2.2 on page 29 for an example of a

program whose data race is nondeterministically detected by Eraser).

1.2.4 Specialized Domain Testing

When a limited or specialized concurrent language is being tested, specialized techniques can
be employed. For example, there is a tool called the Nondeterminator [FLI7] that detects
data races in Cilk, a multithreaded variant of C. The Nondeterminator guarantees that if
a program has a data race it will find and localize it. The Nondeterminator’s algorithms
depend on being able to model the concurrency of a Cilk program with a directed acyclic
graph. Cilk threads cannot communicate with their peers, only with their parents. The

methods used do not apply to the more general concurrency found in Java.

1.2.5 Deterministic Testing

In deterministic testing [CT91], test cases consist not just of inputs for the program to be
tested but of (input, schedule) pairs, where each schedule dictates an execution path of the
program. For each test case, the tester forces deterministic execution of the program using
the schedule provided for that case and supplies the provided input to the program. This
deterministic execution is repeatable; techniques such as those mentioned in section 1.2.3
are used to provide deterministic replay.

The problem with deterministic testing is in generating the test case pairs. Typ-
ically static syntax—based analysis is used, which is limited in the scope of what it can
determine about a program. Approximations must be made and the resulting test cases
are not guaranteed to cover all behaviors of the program. Using symbolic execution in
determining test cases can help to some extent, but symbolic execution ends up duplicating
work done during execution and using far more resources doing it. Given this, why not just

execute the program in the first place and have some sort of feedback loop for dynamically
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generating new test cases? This turns deterministic testing into a combination of nonde-
terministic testing (just run the program up to a certain point) and deterministic testing
(from that point on, record every schedule that should be executed to cover all program
behaviors). This combination is called reachability testing [HTH95]. It can be made to
cover all behaviors of a program for a given input. Reachability testing will be discussed

further in the next section.

1.2.6 Behavior-Complete Testing

Behavior—complete testing of a program on a given input involves systematically executing
every possible behavior of the program on that input. The problem with simply enumerating
the possible schedules of the program is the exponential increase with program size in the
number of schedules that must be considered. The solution is to figure out which schedules
lead to the same behavior and to execute as few schedules for each behavior as possible.
There is usually still an exponential increase in the number of schedules considered, but it
can be reduced enough to test moderately sized programs.

Verisoft [God97] takes the ideas of model checking and applies them to checking ac-
tual programs that do not have models. It makes use of state—space pruning methods that
do not require manageable state identifiers [God96]; for example, it does not reorder two
sections of code that do not access any variables in common. It performs some static anal-
ysis to provide information needed by these pruning methods. Verisoft’s target programs
are small C programs consisting of multiple processes. Verisoft uses “visible” operations
(operations on shared objects) in the code to define the global states of the program. Since
processes run in separate memory spaces and must explicitly declare the variables that they
share, the number of global states is significantly smaller than the number of states, and
since processes can only communicate through global states, Verisoft need only consider
schedules that differ in their sequences of global states. Verisoft further prunes the state
space by identifying schedules that lead to identical behaviors.

Verisoft allows annotations to be inserted into the C code it is testing, including
assertions that will be verified during testing. Verisoft has been shown to successfully
discover errors in C programs composed of several concurrent processes. However, its tech-
niques cannot readily be transferred to Java. Since Java contains threads which share the

same memory space, all variables are potentially shared. Thus there are not a small number
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of explicitly declared “visible” operations that can be used to dramatically reduce the state
space. Verisoft would have to assume that all variables are shared, and end up searching a
prohibitively large state space.

Another behavior—complete testing method is the reachability testing mentioned in
the last section. This builds on a method for systematically executing all possible orderings
of operations on shared variables in a program consisting of multiple processes [Hwa93].
It is similar to Verisoft but does not do any pruning. It does parallelize the executions
of different schedules to speed up testing. Reachability testing, like Verisoft, requires ex-
plicit declarations of which variables are shared and hence does does not apply directly to

multithreaded programs.

1.2.7 Summary of Related Work

Table 1.1 summarizes the categories of methods for testing concurrent programs discussed
in this section. It lists how they fit into each of the five criteria presented in the introduction
to this section.

Only behavior—complete testing satisfies our criteria stated in the introduction to
Section 1.2. However, existing behavior—complete testers do not operate on programs with
multiple threads. No existing methods can solve our problem for us — none can guarantee
to detect all assertion violations in a multithreaded Java program, for a given input.

We can make use of some of the ideas of these testers and the other methods. By
combining Eraser with behavior—complete testing we can cut down on the exponential ex-
plosion in the number of schedules we need to consider. If we assume that a program follows
a mutual-exclusion locking discipline, we can make use of the fact that enumerating possi-
ble orders of the synchronized regions of the program covers all behaviors of the program.
We can even run Eraser in parallel with the tester to ensure that the program follows the
discipline.

We can use some of Verisoft’s techniques to further reduce the number of schedules
we consider. For example, our algorithm does not reorder two sections of code that do not
access any variables in common. As discussed in Section 2.6, in the future we plan to make
use of static analysis to give the tester further information with which to reduce the search
space. Also, we could parallelize the tester as reachability testing suggests.

The tester will provide deterministic replay of any schedule, in order for a user to
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Method Detects Inputs | Complete? | Requires | Static or
Model? Dynamic?

Model checking Assertion violations, All Yes Yes Static
others
Static Analysis Data races, dead- All No No Static

locks, others

Nondeterministic | Assertion violations One No No Dynamic
Testing

Eraser Data races One No No Dynamic
Nondeterminator | Data races One Yes No Dynamic
Deterministic Assertion violations One No No Both
Testing

Behavior— Assertion violations One Yes No Dynamic

Complete Testing

Table 1.1: Summary of properties of various methods for testing concurrent programs that
are described in this chapter. A complete method guarantees to find all errors (of the type
it detects) and not to find any false errors.

examine in more detail (perhaps with a debugger) paths that led to errors. The techniques
of deterministic replay used in other systems are applicable. Section A.7 describes the Rivet
Virtual Machine’s approach to deterministic replay.

Since the tester tests a program for a single input, test case generation is crucial.
Generating test cases for use with the tester is simpler than for other multithreaded pro-
gram testing methods since the effects of different inputs on scheduling can be ignored.
Conventional sequential program test case generation can be used instead of the complex
generation techniques needed to generate test cases for nondeterministic and deterministic

testing.
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Chapter 2

Systematic Testing Algorithms

This chapter describes the algorithms used by our systematic tester, which enumerates
all behaviors of a target multithreaded Java program on a single input. When the target
program meets certain requirements, the tester guarantees to find all possible assertion
violations in the program. Any program condition can be detected using assertions; thus,
the tester guarantees to enumerate all possible behaviors of the program.

This chapter is organized as follows. Section 2.1 explains the testing criteria that the
tester requires of client programs. Section 2.2 motivates and Section 2.3 presents and proves
correct the ExitBlock algorithm which systematically explores all behaviors of a program.
Section 2.4 modifies ExitBlock to create a more efficient algorithm, ExitBlock-RW. Section
2.5 shows how to detect deadlocks using ExitBlock or ExitBlock-RW in the ExitBlock-DD
and ExitBlock-RWDD algorithms; it proves that ExitBlock-DD will detect a deadlock in a
program if one is present. Finally, Section 2.6 discusses enhancements that could be made

to these algorithms.

2.1 Testing Criteria

The tester requires that a program it is testing meets three criteria: that it follows a mutual-
exclusion locking discipline, that its finalization methods are “well-behaved,” and that all
of its threads are terminating. Our implementation of the tester also assumes that the
program’s native methods meet the requirements of the Rivet Virtual Machine (see Section
3.1.2) and the tester’s deterministic replay (see Section 3.3.2), but these requirements are

implementation—dependent. Collectively we refer to the three fundamental requirements as
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the testing criteria. They are discussed in turn in the following three sections.

2.1.1 Mutual-Exclusion Locking Discipline

A mutual-exclusion locking discipline dictates that each shared variable is associated with
at least one mutual-exclusion lock, and that the lock or locks are always held whenever
any thread accesses that variable. Java encourages the use of this discipline through its
synchronization facilities. The Eraser algorithm by Savage et al. [S+97] (described below)
can be used to efficiently verify that a program follows this discipline.

This criterion can be verified by the tester, by running Eraser in parallel with itself
to ensure that the discipline is followed. Running Eraser alone only ensures that a program
follows the discipline in one particular schedule (see Figure 2.2), while running Eraser in
parallel with the tester checks that the discipline is followed in every schedule. Even though
the tester does not guarantee to execute all behaviors of a program that contains a discipline
violation, it does guarantee to find the violation. This is guaranteed because the tester will
not miss any behavior until the instant one thread communicates with another thread using
shared variables that are not protected by consistent sets of locks. At this point Eraser will
catch the discipline violation.

While errors of the sort detected by Eraser are frequent, they by no means exhaust
the possible errors in a multithreaded program. Consider the example program SplitSync
from Figure 1.1 on page 15, or any of the programs in Chapter 4. These are simple programs
that correctly follow a mutual-exclusion locking discipline yet contain serious thread—-related
errors.

By limiting the tester to those programs that follow this locking discipline, some
classes of valid programs are ruled out for use with the tester. For example, Java’s wait and
notify facilities can be used to build a barrier, which is a point in the program which all
threads must reach before any threads are allowed to continue beyond that point. A program
using barriers can validly use different sets of locks for protecting the same variable on
different sides of a barrier. However, as Savage et al. argued, even experienced programmers
with advanced concurrency control mechanisms available tend to use a simple mutual-
exclusion locking discipline. We expect that requiring such a locking discipline will not
overly restrict the applicability of the tester.

This assumption is the key to our testing algorithm. The reason we require it is
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explained in Section 2.2. We now briefly describe the Eraser algorithm.

The Eraser Algorithm

Violations of a mutual-exclusion locking discipline are called data races. The Eraser al-
gorithm detects data races by dynamically observing what locks are held by each thread
on each variable access. The discipline is followed only when a non-empty set of locks is
associated with each shared variable, and that set (or a superset of it) is consistently held
by every thread that accesses that variable.

The algorithm is implemented by instrumenting every lock acquisition and release
and every variable read and write. The set of locks that each thread currently holds is
tracked. A data structure for each variable v holds what is referred to in [S+97] as C(v),
the set of candidate locks for v. A lock is in C(v) at the current point in the program if
every thread up to that point that has accessed v held the lock when it did so. C(v) is
initialized to be the set of all possible locks, and on each access of v, C(v) is assigned to be
the intersection of the old C(v) with the set of locks held by the thread accessing v. This
is called lockset refinement. If C(v) ever becomes empty Eraser reports a violation of the
locking discipline.

Eraser relaxes the locking discipline a little by allowing variables to be written
while holding no locks in a constructor of the object that owns the variable, or in other
initialization code, if the program has no concurrent access to objects until they are fully
initialized. Eraser also allows access to read-only variables while holding no locks. To
handle these cases where a variable need not be protected by locks, Eraser keeps track of
a state for each variable. The states and their transitions are shown in Figure 2.1. As
the figure indicates, Eraser assumes that the first thread to access a variable is initializing
the variable, and that no locks are needed for this initialization. Only when a second
thread accesses the variable does lockset refinement begin, and no errors are reported if the
lockset becomes empty unless the variable has been written to. This eliminates false errors
reported for read—-only data. Eraser was designed to operate on a range of synchronization
mechanisms and has extra complexity to deal with read—write locks (multiple readers but
only one writer). Since Java does not have a standard concept of such locks, we omit this
complexity from the algorithm.

Eraser’s heuristics to deal with its relaxed discipline can cause it to miss violations
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Figure 2.1: State diagram of the state that Eraser maintains for each variable. Transitions
are performed on reads (indicated by “r”) and writes (indicated by “w”) to the variable. A
dashed line indicates that no lockset refinement is performed. A thin solid line indicates that
lockset refinement is performed but that no violations are reported if the lockset becomes
empty. A thick solid line indicates that lockset refinement is performed and an error is
reported if the lockset becomes empty. (This figure is adapted from [S+97].)

of the locking discipline. Savage et al. argue that their empirical evidence from a variety
of actual systems bears out their hypothesis that these heuristics do not lead to missing
actual data races or mutual-exclusion errors in practice, and prevent reporting numerous
discipline violations that are not really program errors. OQur tester works properly for this
relaxed discipline.

Eraser by itself cannot make any guarantees that it finds all data races present in a
program. Consider the code in Figure 2.2: Eraser will detect the data race in this program

in only some of the possible schedules.

2.1.2 Finalization

Classes in Java may have finalize methods, or finalizers, that are called by the garbage
collector when instances of those classes are reclaimed. There are no guarantees on when
finalizers are called. They can be called in any order or even not at all, depending on when
or if the garbage collector runs. This means that the tester would need to execute every
possible schedule of finalizers with the rest of the program in order to find possible assertion

violations, which can be a very large number of schedules. However, most finalizers are
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public class NoEraser implements Runnable {
static class Resource { public int x; }
static Resource resource = new Resource();

// Two threads A and B
// iff B writes resource.x before A -> Eraser data race
public static void main(String[] args) {

new NoEraser("A");

new NoEraser("B");

}

private String name;

public NoEraser(String name) {
this.name = name;
new Thread(this).start();

}

public void run() {
int y;
synchronized(resource) {
y = resource.x;
}

if (y==0 && name.equals("B"))
resource.x++;

else synchronized(resource) {
resource.x++;

}

}
}

Figure 2.2: A program that will pass Eraser’s test nondeterministically. If the thread named
B increments resource.x before A, B does so without obtaining the lock for resource first.
This is a data race that Eraser will detect. However, if A increments resource.x before B
does, Eraser will not report any errors.
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used only to deallocate memory that was allocated in some native Java method or system
resources such as open file descriptors. Since these activities do not interact with the rest of
the program, the order of execution of such finalizers does not affect the rest of the program.
To reduce the number of schedules tested, the tester assumes that the timing of finalizers
has no bearing on whether assertions will be violated or not or whether a deadlock can
occur. We call this the tester’s finalization criterion.

This criterion is met when a program’s finalizers access only variables of this (the
instance object they are called on) and native state that does not affect the rest of the
program. In order to ensure that no deadlocks can occur due to the timing of a final-
izer, finalizers should not contain nested synchronized regions or perform wait or notify
operations.

The finalization criterion seems to be quite reasonable and is met by the finalizers
in the standard Java libraries. The asynchronous timing of finalizers make it difficult for
them to correctly interact with the rest of the program, so programmers tend not to violate
the criterion. The tester could check that the finalization criterion is met by examining all
finalizers in a program for these properties, but we have not attempted this.

Given this assumption, the tester can ignore the garbage collector completely, since
the only way it can affect whether assertions are violated or not is through the timing of
finalizers. The tester makes no guarantees about programs that do not meet the finalization

criterion.

2.1.3 Terminating Threads

The tester requires that all of the threads that compose a program it is testing are termi-
nating. This is so that the depthfirst search of the program’s schedules that the tester
performs will terminate. If a program has non-terminating threads, the user can either
modify the source code (for example, changing an infinite loop to an n—iteration loop for
some n) or the tester can limit each thread to execute a maximum of n bytecodes. In
this case the tester would only guarantee to find all assertion violations and deadlocks in
schedules involving n or fewer bytecodes executed in each thread. Another solution might
be to have the tester stop threads when they leave a specified module of interest.

The tester could check that a program’s threads are terminating by having a default

value for n; when it finds a thread that runs for more than n bytecodes it would notify the
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user that the thread executed for too long and that its termination should be examined.

2.2 Testing Algorithms Overview

A program following a mutual-exclusion locking discipline can be divided into atomic blocks
based on blocks of code that are protected by synchronized statements. Shared variables
cannot be accessed outside of synchronized atomic blocks. Furthermore, shared variables
modified by a thread inside of an atomic block cannot be accessed by other threads until
the original thread exits that block. This means that enumerating possible orders of the
atomic blocks of a program covers all possible behaviors of the program.

To see why enumerating the orders of the atomic blocks is sufficient, consider the
following. The order of two instructions in different threads can only affect the behavior
of the program if the instructions access some common variable — one instruction must
write to a variable that the other reads or writes. In a program that correctly follows a
mutual-exclusion locking discipline, there must be at least one lock that is always held when
either instruction is executed. Thus they cannot execute simultaneously, and their order is
equivalent to the order of their synchronized regions. By enumerating only synchronized
regions, we significantly reduce the number of schedules to consider — rather than consid-
ering all possible schedules at the instruction level, the tester need only consider schedules
of the program’s atomic blocks.

Since the atomic blocks of a program can change from one execution to the next
due to data flow through branches, we cannot statically compute a list of atomic blocks.
We instead dynamically enumerate the atomic blocks using depth—first search. Depth-first
search requires that the threads of the program are terminating; this is the reason for the
criterion that all threads being tested are terminating.

To perform depth—first search on a program we first execute one complete schedule
of the program. Then we back up from the end of the program to the last atomic block
boundary at which we can choose to schedule a different thread. We create a new schedule,
branching off from this point in the program by choosing a different thread to run. We again
execute until program completion. Then we systematically repeat the process, continuing
to back up to atomic block boundaries where we can make different choices than before.

We end up with a tree of schedules. Figure 2.4 illustrates a sample tree for the three
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Thread 1 =
A:  synchronized (x) { <arbitrary code> }

Thread 2 =
B: synchronized (x) { <arbitrary code> }

Thread 3 =
C: synchronized (x) { <arbitrary code> }

Figure 2.3: Three threads that each contain a single synchronized region, and thus a single
atomic block. The sections marked <arbitrary code> indicate regions of code that do not
contain synchronized statements.

T1,T2,T8-----=--~=-- T2, T3, Tl------------ T3, T1 T2
o4 e ey
T2, T3----- T3, T2 T3, T1----- T1, T3 T1,T2----- T2, T1
@5 @c Od @A @A @3
T3 T2 T1 T3 T2 1
@ci @Bi Ai .ci ®Bi @Ai
0 0 0 0 0 0

Figure 2.4: Tree of schedules for the three threads of Figure 2.3. At each node of the tree
we list the live threads; the first thread listed is the one that we chose to execute from
that node. An arrow indicates the execution of a single atomic block, labeled on its left. A
horizontal dashed line indicates that the two nodes it joins are equivalent client program
states from which the two subtrees follow different schedules. The circled numbers show
the order in which the atomic blocks are executed by our depth—first search.

single-atomic-block threads of Figure 2.3. The circled numbers show the order in which
the atomic blocks are executed by the search, and dashed lines indicate points where we
branch off new schedules. This tree represents all possible schedules of the three atomic
blocks: ABC, ACB, BCA, BAC, CAB, and CBA.

To implement this search we need the ability to back up the program to a previous
state, and the ability to present a consistent external view of the world to the program as
we execute sections of code multiple times. Our tester uses checkpointing to back up and
deterministic replay to ensure the program receives the same inputs as it is re-executed;
the implementation of these is discussed in Chapter 3.

This method will find an assertion violation in a program if one can occur, regardless
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of whether the violation shows up when the program is executed on a single processor or
a multiprocessor. The locking discipline enforces an ordering on shared—variable accesses
— two threads executing on different processors cannot access the same variable at the
same time. Theorem 1 in Section 2.3.3 proves that the execution of a program following
the discipline on a multiprocessor is equivalent to some serialization of that program on a
single processor.

The ExitBlock algorithm presented in the next section systematically explores sched-
ules of atomic blocks by dynamically exploring the tree of schedules using depth-first search.
The number of schedules is reduced further in the ExitBlock-RW algorithm of Section 2.4,
which uses data dependencies between atomic blocks to identify which sets of blocks’ order-
ings do not affect the program’s behavior. The final algorithms presented (in Section 2.5)
are the ExitBlock-DD and ExitBlock-RWDD algorithms, which detect deadlocks without

executing any more schedules than ExitBlock or ExitBlock-RW, respectively.

2.3 The ExitBlock Algorithm

The assumptions discussed in Section 2.1 allow the tester to systematically explore a pro-
gram’s behaviors by considering only schedules of atomic blocks. The tester also needs to
consider each possible thread woken by a notify operation. The extra work needed to deal
with notify is discussed in Section 2.3.1; we ignore it for now.

For un—nested synchronized regions, it is clear what an atomic block is: the region
from a lock enter to that lock’s exit (a lock enter is an acquisition of a lock, which occurs at
the beginning of a synchronized block or method, while a lock exit is the release of a lock
that occurs at the end of a synchronized block or method and in wait operations). The
first atomic block of a thread begins with its birth and ends with its first lock exit, while
the last atomic block begins with its last lock exit and ends with its death.

For the sample thread in Figure 2.5, the code sections labeled 2 and 4 must be in
separate atomic blocks. The rest of the sections can be grouped in any manner; we could
have two blocks, 1,2,3 and 4,5, or 1,2 and 3,4,5, or we could have three blocks, 1,2, 3,4, and
5, or many other combinations. We want as few blocks as possible, so we choose to group
the non—synchronized code before a synchronized region with that region in one atomic

block. We would like to join code ending in thread death with the previous atomic block,
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Thread 1 =

1: <arbitrary code>

synchronized (a) { <arbitrary code> }
<arbitrary code>

synchronized (b) { <arbitrary code> }
<arbitrary code>

g wN

Figure 2.5: An example thread that has two synchronized regions. The sections marked
<arbitrary code> indicate regions of code that do not contain synchronized statements.
The code is arranged with entire regions falling on single lines to facilitate referring to
regions by number. We divide the thread into three atomic blocks: 1,2, 3,4, and 5.

Thread 1 =

1 <arbitrary code>

2 synchronized (a) { <arbitrary code>

3: synchronized (b) { <arbitrary code> }
4 <arbitrary code> }

5 <arbitrary code>

Thread 2 =

6: <arbitrary code>

7: synchronized (a) { <arbitrary code> }
8: <arbitrary code>

9: synchronized (b) { <arbitrary code> }

10: <arbitrary code>

Figure 2.6: Two threads, one containing nested synchronized regions. Even for nesting we
delineate atomic blocks with lock exits. We divide Thread 1 into atomic blocks 1,2,3, 4,
and 5, and Thread 2 into atomic blocks 6,7, 8,9, and 10.

but there is no way to know beforehand when a thread is going to die, so we keep them
separate. Thus we have three atomic blocks: 1,2, 3,4, and 5.

Now we need to deal with nested synchronized regions. Perhaps we can generate
all program behaviors by focusing on synchronized regions of one lock variable at a time.
This way we never encounter any nesting. If a program has k lock variables, and we make
k passes through the program, each time considering schedules of atomic blocks defined
only by the synchronized regions of the kth lock variable, will the sum of those k passes
cover all behaviors of the program? The answer is no. This is because shared variables are
typically not completely independent of one another in their effect on program behavior.
Information from two shared variables that are protected by different locks can be combined

(for example, into a local variable that holds their sum). We need to consider atomic blocks

34



based on all synchronized regions.

We must decide how to divide nested synchronized regions into atomic blocks. As
an example, consider the code for Thread 1 in Figure 2.6. Should the code section labeled
2 be in a separate atomic block from section 37 Or can we combine them? For the purpose
of finding all assertion violations, it turns out that we can combine them. This may seem
counter—intuitive. Intuition suggests that we need to schedule Thread 2’s section 9 in
between sections 2 and 3, because Thread 2 could modify variables protected by the b lock
while Thread 1 is in section 2. However, this is the same as having section 9 execute before
both sections 2 and 3. Intuition also suggests that we should schedule section 7, 8, and 9
in between sections 2 and 3; this cannot occur, however, because while Thread 1 holds the
a lock section 7 cannot execute. We thus define atomic blocks to be sections of code in
between lock exits (thread birth and death also define borders of atomic blocks, of course).

Ignoring wait and notify for the moment, the ExitBlock algorithm is shown in
Figure 2.7; it systematically executes the schedules of atomic blocks delineated by lock exits.
ExitBlock dynamically explores the tree of possible schedules using depth—first search. Each

thread in the program is kept in one of three places:

1. In the “block set” of a lock, if the thread needs that lock to continue its execution

and another thread holds the lock.

2. As the “delayed thread” — the thread that is not allowed to execute at this time in

order to schedule another thread.
3. In the “enabled set”, the set of threads that are ready to be executed.

ExitBlock runs the program normally until there are two threads; then it places both of
them in the enabled set and enters its main loop. Each iteration of the loop is the execution
of an atomic block of the current thread, which is chosen from the enabled set. First
a checkpoint is taken and the enabled set saved; then the current thread is chosen and
executed. When it reaches a lock exit, a new branch of the tree of schedules is created and
stored on a stack for later execution (remember, ExitBlock uses depth—first search). This
branch represents executing the rest of the threads from the point just prior to this atomic
block. We need the checkpoint so we can go back in time to before the block, and we need
to make sure we execute a different thread from that point. So we make the current thread

the “delayed thread” of the branch. The delayed thread is re-enabled after the first atomic
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BEGIN:
run program normally until 2nd thread is started, then:
enabled = {1st thread, 2nd thread}
delayed_thread = null
goto LOOP
LOOP:
if (enabled is empty)
if (stack is empty) goto DONE
pop (RetPt, saved enabled, saved thread) off of stack
change execution state back to RetPt
enabled = saved_enabled
delayed_thread = saved_thread
goto LOOP
curThread = choose a member of enabled
RetPt = make new checkpoint
old_enabled = enabled
run curThread until one of the following events occurs:
if (lock_enter && another thread holds that lock)
move curThread from enabled to lock’s block set
change execution state back to RetPt
goto LOOP
if (curThread dies or reaches execution limit)
remove curThread from both enabled and old_enabled
goto LOOP
if (thread T starts)
add T to enabled set
continue running curThread
if (lock_exit)
save_enabled = old_enabled minus curThread
push on stack (RetPt, save_enabled, curThread)
add delayed_thread to enabled set
add all threads on lock’s blocked set to enabled set
goto LOOP
DONE: // testing is complete!

Figure 2.7: Pseudocode for initial ExitBlock algorithm that does not handle wait or notify.
ExitBlock systematically executes the tree of possible schedules by dynamically discovering
the atomic blocks of a program. At each lock exit (atomic blocks are delineated by lock
exits) it pushes another branch of the tree onto its stack to be executed later.
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block of a branch so that it can be interleaved with the atomic blocks of the other threads.
Note that we use the old enabled threads set in the branch; this is because newly created
threads cannot interact with their own atomic block, and in fact did not exist at the point
of the checkpoint.

ExitBlock keeps executing the current thread, pushing branches onto the stack, until
the thread dies. Then it chooses a different thread from the enabled set to be the current
thread and executes it in the same manner. ExitBlock treats the execution from a thread’s
final lock exit to its death as a separate atomic block; this is unavoidable since we have no
way of knowing when a thread will die beforehand. When the enabled set becomes empty
ExitBlock pops a new branch off of the stack and uses the branch’s state as it continues the
loop.

If the current thread cannot obtain a lock, a new thread must be scheduled instead.
Since we only want thread switches to occur on atomic block boundaries, we abort the
current branch of the tree and undo back to the end of the previous atomic block before
we schedule a different thread. Which threads own which locks must be kept track of to
determine if a lock can be acquired without having the thread actually block on it. The
thread is placed in the block set of the lock and a different enabled thread is tried after
returning to the checkpoint. ExitBlock cannot enter a lock—cycle deadlock since it never
lets threads actually block on locks, so that is not a concern (see Section 2.5).

ExitBlock assumes that it has the power to take and return to checkpoints, and
to deterministically replay all interactions between the Java code of the program and the
rest of the world: input, output, and native methods. It must do so to make the threads
of the program deterministic with respect to everything except variables shared with other
threads. The pseudocode in this chapter assumes that deterministic replay is going on
behind the scenes; Section 3.3.2 discusses how to implement deterministic replay.

Figure 2.8 shows the tree of schedules executed by ExitBlock for a program consisting
of the two threads in Figure 2.6. Thread 1 is abbreviated as T1 and Thread 2 is abbreviated
as T2 in the figure. Each node lists the threads in the enabled set, and the delayed thread,
if there is one, in parentheses. An arrow indicates execution of one atomic block, with the
section numbers of the code contained in the block listed to the left of the arrow. Parallel
execution paths are connected by dashed lines to indicate that they are both executed from

a checkpoint that was created at the left end of the dashed line. The large X in the figure
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Figure 2.8: Tree of schedules explored by ExitBlock for the threads in Figure 2.6. Threads
in parentheses are delayed. Arrows indicate the execution of the sections of code on their
left. An X means that a path was aborted because a lock could not be obtained.

indicates that that path was aborted because T2 could not obtain a lock that T1 was holding.

A checkpoint is created at each node in the tree, but most are not used.

2.3.1 Thread Operations

So far we have ignored thread communication other than with shared variables protected
by locks; in particular, we have ignored wait and notify. A thread can wait on an object,
causing the thread to go to sleep until another thread performs a notify (awakening one
thread) or notifyAll (awakening all threads) on that object. We can deal with wait by
considering the lock exits that result when a thread waits to be like other lock exits. A
thread that has acquired a lock multiple times, which is permitted by Java, will release
it multiple times when it performs a wait on the lock object. Since there is no way to
schedule another thread in between these releases, we consider them to be one lock exit.
Also, a thread that performs a wait should be removed from the set of enabled threads for
the duration of its wait.

Dealing with the notification operations is more involved. For notifyAll we need
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to add every thread that is woken up onto the block set for the notify lock. For notify we
need to do the same thing for the single thread that wakes up; however, if there are multiple
threads waiting on an object, which thread will be woken by notify is nondeterministic.
The tester needs to explore the schedules resulting from each possible thread being woken
by a notify, so it needs to make new branches for each. Figure 2.9 shows additions to
the ExitBlock algorithm that will handle wait and notify. For each branch of the tree
in which we wish to notify a different thread, we must prevent threads that have already
been notified from being notified again. Thus we keep track of a set of threads that should
not be notified (the “no_notify” set) for every branch of the execution tree. Even if there
are multiple notifications in one atomic block, we can still use a single no_notify set since
there can be no overlap between threads waiting on the multiple notify objects (a thread
can only wait on one object at a time). When we execute a notify we wake up a thread
that is not in the no_notify set. We want to carry the set to the next branch’s identical
notify operation in order to keep reducing the set of threads we wake up; however, we do
not want a different notify that occurs later to have the threads it wakes up restricted by
this notify. Therefore, after pushing a new notify branch on the stack, we remove from
the no_notify set all threads originally waiting on the notify object.

The other thread-related operations are simpler to handle:

e sleep — we are already considering all behaviors assuming threads can be preempted

at any time, so a thread switch resulting from a sleep call is already being considered.

e yield — we are already considering preemption everywhere, so a yield changes noth-
ing in the schedules we consider. Furthermore, we do not want to execute the yield

since we want to thread switch only on lock exits.

e preemption — again, we are already considering preemption everywhere. As with

yield, we do not want any thread switches except at lock exits.

e setPriority — we must ignore priorities, since Section 17.12 of [GJS96] does not
guarantee that a lower priority thread cannot preempt a higher. We have to consider

schedules of threads regardless of priority.

e stop — we wait until the stopped thread really dies, and ExitBlock already deals
with thread death.
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BEGIN:

run program normally until 2nd thread is started, then:
wait = {}
nonotify = {}

LOOP:
if (enabled is empty)

pop (RetPt, saved_enabled, saved_thread, wait,
nonotify) off of stack
change execution state back to RetPt

run curThread until one of the following events occurs:

if (curThread does a wait())

move curThread from enabled set to wait set

count as lock_exit
if (curThread does a notifyAll())

wake up all threads waiting on the notify object

move those threads from wait set to block set of notify lock
if (curThread does a notify())

select a thread T not in nonotify to wake up

move T from wait set to block set of notify lock

if (there are still threads waiting on the notify object)

push on stack (RetPt, enabled, delayed thread, wait,
no notify+T)
nonotify = nonotify -
all threads originally waiting on notify object

if (lock_exit)

push on stack (RetPt, save_enabled, curThread, wait, {})

DONE: // testing is complete!

Figure 2.9: Changes to the pseudocode for the ExitBlock algorithm in Figure 2.7 in order
to handle wait and notify. A set of waiting threads and a set of threads that should not
be notified are added to each branch. We treat wait like a lock exit, and for notify we
create new branches of the tree to consider other threads being notified.
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e join — turns into wait.

¢ blocking i/o operation — since we are testing the program for one particular input,
we assume the user will provide any needed input and that blocking on an input will
not be a problem; replaying the input deterministically for other paths is necessary
and, as discussed earlier, is assumed to be happening all along. Implementing this

deterministic replay is discussed in Section 3.3.2.

e suspend and resume — the tester needs to ensure that a suspended thread is not in
the enabled set, and that a non—suspended thread is. A resumed thread can still be
waiting or blocked on a lock, so care must be taken on adding it to the enabled set.
The details of this have not been completely worked out, so the pseudocode ignores

these thread operations.

2.3.2 Number of Schedules Executed by ExitBlock

For a program with k threads that each contain n lock exits (say, m different locks obtained
- times each), the total number of lock exits we have is k*n. (kn") is the number of ways we
can place the first thread’s n lock exits in between all of the other lock exits. Placing a lock
exit also places the atomic block that the lock exit terminates. Now that those are placed,
we have (k — 1) x n slots left; ((k_nl)") is the number of ways the second thread can place
its atomic blocks in between the others. The process continues until we have the number

of schedules that the ExitBlock algorithm needs to consider:

(kn> ) ((k — 1)n> § ((k - 2)n> o (”) (2.1)

Stirling’s approximation gives us

()~ s (5 ()"

()= (e () () )

Equation 2.1 contains a product of exponential terms; the result is still exponential.

so we have

Thus the number of schedules that must be explored grows exponentially in both the number

of threads and the number of lock uses by each thread.
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How does this compare with an algorithm that did not assume a mutual-exclusion
locking discipline and simply interleaved every atomic instruction? If we assume that there
are an average of 100 instructions per lock exit, we can simply replace n with 1007 in our
formulas. This is also exponential growth, but much faster exponential growth. If we fix

k = 2 we have, for the first term of Equation 2.1,
20\ _, 2%n
n) \Vn
200n) _ 2200m
100n) NG

for an instruction—interleaving algorithm. This difference is huge. Of course, ExitBlock’s

for ExitBlock versus

paths are still growing exponentially. Section 2.4 will modify the ExitBlock algorithm to
reduce the best—case growth of the number of paths from exponential to polynomial in the
number of locks per thread.

As can be seen, most real concurrent programs will have too many schedules to
search in a reasonable amount of time (a few hours). The tester could explore portions of
programs by executing the program normally (i.e., nondeterministically, without enumer-
ating all behaviors) up to a certain point and from that point on systematically exploring
behaviors. We plan to embed the tester in a sophisticated program development environ-
ment and in conjunction with a debugger and other tools that will make use of its systematic
search abilities within focused contexts.

Another planned feature of the tester to cope with long execution times is to record
traces of its execution and replay particular schedules. For example, it will record all
schedules that lead to assertion failures during an overnight run so that those schedules can

be examined in detail by the user in the morning.
2.3.3 Correctness Proof for ExitBlock
First a few notes:

e A mutual-exclusion locking discipline does not distinguish between reads and writes —
all accesses to a variable must be protected by the same set of locks. This means that
we only have one kind of dependency between variables, access dependencies, rather

than the three kinds of dependency we would have to consider if reads and writes
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were treated differently (namely, write-read dependencies, write-write dependencies,

and read-write anti-dependencies).

e Java locks are owned by threads. If one thread obtains a lock, only that thread can

subsequently release the lock.

e Java enforces properly paired and nested lock enters and exits. This means that
the locks owned by a thread when it acquires lock L cannot be released until after
it releases L. There are no separate lock enter and exit language mechanisms, only

synchronized blocks.

e A thread cannot die without first releasing all locks that it holds. This follows from
Section 20.20 of [GJS96], which lists the ways in which a thread can die:

— Its run method completes normally. Since a thread cannot hold locks before its
run methods begins, it cannot be holding any locks after the run method returns,

because Java constrains lock enters and exits to be properly paired.

— Its run method completes abnormally, i.e., an exception is thrown. By Section
14.17 of [GJS96], if execution of a synchronized block “completes abruptly for
any reason, then the lock is unlocked.” And by Section 8.4.3.5 of [GJS96], a syn-
chronized method acts just like it was a normal method whose body is wrapped
in a synchronized block. Thus after abnormal completion of the run method no

locks may be held.

— The thread invokes Thread.stop, or some other thread invokes stop on this
thread: Thread.stop always results in some Throwable being thrown, which by

the reasoning above will cause all held locks to be released.

— System.exit is invoked. In this case the entire program terminates, so we are

not concerned with who holds what locks.
And a few definitions:

Definition 1 An atomic instruction is the smallest execution fragment that cannot have a

thread switch occur in the middle of it (when executed on a single processor).

Opcodes that only affect local state, such as aload or iinc, are atomic in this

sense. For instructions that can affect non-local memory, we turn to the definition of thread
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actions in Section 17 of [GJS96]. Opcodes like putfield and getfield are not atomic but
are made up of several actions; for example, getfield consists of the actions read, load,
and use. These actions are our atomic instructions.

A thread issues a stream of atomic instructions. Section 17 of [GJS96] states that
the order of instructions can be viewed by another thread as being different from the order
in which they are issued (in particular, writes need not be completed in order); however,
since we are only considering programs that follow a mutual-exclusion locking discipline,
and since a lock exit forces all pending writes to be completed, the order in which a thread
issues its instructions can be considered to be the order that other threads view those

instructions without loss of generality.

Definition 2 A schedule S of a program P is a representation of a particular ezecution
of P on a single processor that denotes the interleaving of execution of the threads of P on
that processor. Let T = {t1,...,tn} be the set of threads that P started during its execution.
FEach thread t; is composed of the sequence of m; atomic instructions that it issued during
P’s execution: t; = a1 ... Qim;. Now S = s152...8,, where each s; is a mazimal non-empty
sequence of atomic instructions a1 . ..aqk, @ € {1,...,n} called a segment of thread t,.
Every thread in T must be represented in S in its entirety with its instructions in order. So
for each t; € T let u; = {s; € S | s; is a segment of t;}. Now if we arrange the elements
of u; in order (so that s; precedes s; if i < j) and expand each s; into its constituent
atomic instructions, the resulting sequence of atomic instructions must equal the sequence
of atomic instructions that makes up t;. There is one final requirement: in a schedule a
thread segment cannot appear before that thread is created by some other thread’s segment

(with the exception of the initial thread, of course).

As explained in Section 2.1.2, we ignore the garbage collector and finalization of
objects. Thus we do not consider any garbage collection threads or finalization threads in

our schedules. They are simply not present.

Definition 3 A lock exit is either a monitorezit, a return from a synchronized method, or
the lock release that occurs when a wait operation is performed. A lock exit is equivalent to

an unlock action of Section 17 of [GJS96].

Definition 4 An exit-block schedule is a schedule in which all segments end with lock

exits or thread deaths. Note that Java requires that a thread that dies call notifyAll on

44



itself, which involves acquiring the lock for the thread object. This means that no thread can

execute, however briefly, without its execution containing at least one lock exit.

Now we prove that ExitBlock finds all assertion violations. First we show that it

does not matter whether a program is executed on a multiprocessor or a single processor:

Theorem 1 The behavior of a Java program that follows a mutual-exclusion locking dis-
cipline on a multiprocessor machine is equivalent to some serialization of that program on

a single processor.

Proof: Let P be the program and @ = {qi1,.-.,qn} be the set of processors on the multi-
processor machine. Let S; = s;18i2... Sim; be the schedule executed by processor ¢;. Now

serialize the S; into a single schedule S as follows:

e If 5;; began and completed before si; began (in real time), place s;; before sj; in S.

e If s;;’s execution overlapped with s;;’s execution, split both segments into their atomic
instructions and place those instructions into S in the order that they executed. If

any of those instructions executed simultaneously, place them in S in arbitrary order.

Why can simultaneously executed instructions be placed in arbitrary order? Their
order can only matter if there are dependencies between them. Given that the rest of S is
in the order of real time execution, there can only be dependencies between them if one or
more of them reference variables that are shared between their respective threads. Now,
since the program follows a mutual-exclusion locking discipline, only one thread at a time
may access shared variables. Thus simultaneously executed instructions cannot have any
dependencies between them and placing them in S in arbitrary order will have no effect on
the execution of the program.

Therefore this serialization produces a schedule S whose execution on a single pro-

cessor will be indistinguishable from the execution of P on (). O

Next we show that ExitBlock executes all exit—block schedules of a program. Finally,
we show that an assertion violation that occurs in some execution of a program must also
occur in one of the exit—block schedules. In the remaining theorems, for simplicity, we shall
only consider programs executed on a single processor. Theorem 1 allows these theorems

to apply to programs executed on any number of processors.
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Theorem 2 C(Consider a program P that meets the testing criteria defined in Section 2.1.
For a given input, let Sy be the set of all possible schedules of P when executed on a single
processor. Let Sezi be the set of exit—block schedules in Suy. Then the ExitBlock algorithm

run on P for the same input executes every schedule in Seyit.

Proof: By contradiction. Assume that an exit-block schedule S = s1s9...3s,, that is a
member of S¢;;: exists that the ExitBlock algorithm does not execute. Compare S to all
schedules executed by ExitBlock and find the longest prefix of S that matches a schedule
executed by ExitBlock. Let s, be the first segment in which S differs from that schedule.
We have 0 < n < m such that sy ...s,_1 is a prefix of some schedule produced by ExitBlock,
but s, is never executed directly after s,_; by ExitBlock.

Let ¢ be the thread of which s, is a segment. ¢ must have been created earlier than
Sn, and it must not be blocked on a lock or waiting after s,_1 since S is a valid schedule. ¢
cannot be delayed either. A thread is only delayed for the first atomic block of a new branch;
the new branch is created after executing the next atomic block of the delayed thread. So
if ¢ were delayed after s,_; then a new branch must have been created in response to ¢
executing the first atomic block of s,. But if s,’s first atomic block was executed, then
the rest of s, must have been executed as well, for ExitBlock lets the currently executing
thread continue until it dies, performs a wait, or blocks on a lock. Since S exists, we know
that ¢ does none of these things in the segment s,. Thus ¢ cannot be delayed without this
branch’s creator having executed s, immediately after s, 1, which would contradict our
assumption. This means that ¢ must be in ExitBlock’s enabled set at the end of s,,_.

The ExitBlock algorithm then executes the next segment of some thread in its
enabled set. If it chooses thread ¢’ # ¢, it will (after the first lock exit) push onto its stack
a new branch. This branch’s task is executing all threads that were enabled at the end of
Sn—1 (except for ¢') from the checkpoint taken immediately after s,_;. Because ExitBlock
does not terminate until the stack is empty, it will eventually execute the stored branch. If
it does not choose to execute ¢ then, it will store another branch with a smaller enabled set
for execution from the same checkpoint. Stored branches with still smaller enabled sets will
be created until the enabled set is empty. Thus ExitBlock will eventually choose to execute
t from the checkpoint after s,_1.

Once ExitBlock executes the next segment with ¢, it will keep executing ¢ (pushing

alternative branches onto the stack along the way) until ¢ dies, performs a wait, or blocks
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on a lock. Because S exists, ¢ must not die, wait, or block on a lock during the code
executed by it in s,. Thus ExitBlock will execute ¢ at least until the end of the code in s,,.

If there are no other enabled threads at this point, then n = m and we have shown
that ExitBlock executes S and have reached a contradiction. If there are, then since s,
ends in a lock exit or a thread death (otherwise it could not be a segment) ExitBlock will
create a branch for execution of some other thread from a checkpoint immediately after s,.
This means that ExitBlock will executed a schedule with a prefix s ...s,. But this is also
a contradiction; therefore the assumption that S exists must be incorrect. This proves the

theorem. O

Theorem 3 Consider a program P that meets the testing criteria defined in Section 2.1.
Suppose that for a given input, when executed on a single processor, P can produce an asser-
tion violation. Consider an ezecution of P that produces the violation. Let T = {t1,...,tp}
be the set of threads that P starts during this ezecution, and let S = s152...8m, be the
schedule of these threads that leads to the assertion violation. A schedule S' exists that is

produced by the ExitBlock algorithm in which the same assertion is violated.

Proof: We construct S’ from S as follows. For each s; we apply the following transforma-

tions. Let ¢ € T' be the thread executing s;.

e If s; contains no lock exits, move all of the atomic instructions from s; forward to the
beginning of the nearest s;, j > i, such that s;’s thread is also ¢. If such an s; does
not exist then s; must end in a thread death. In this case, move all of the atomic
instructions from s; backward to the end of the nearest s; such that s;’s thread is
also t. Neither of these movements affects whether the assertion is violated or not, as

argued below:

1. In the case that s; exists, the movement of s; obviously does not change the
execution of any bytecodes prior to s;. It also does not change the execution
of any bytecodes between s; and s; (and consequently no bytecodes from s;
onward). This follows from the mutual-exclusion locking discipline: if s; accesses
any shared variables, t must be holding the set of locks associated with each of
those variables. Because s; performs no lock exits, and because no other thread

can release any locks for ¢ (Section 17.5 of [GJS96]), those locks are still held at
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least until the next segment of ¢, which is s;. Thus no intervening segments may
obtain those locks in order to access any shared variables that s; accesses. With
no dependencies between s; and the intervening code, moving s; to the beginning

of sj does not affect whether or not the assertion is violated.

2. In the case that s; does not exist, the movement of s; obviously does not change
the execution of any bytecodes prior to si. It also does not change the execution
of any bytecodes between s and s; (and consequently no bytecodes from s;
onward). This follows from the mutual-exclusion locking discipline: if s; accesses
any shared variables, t must be holding the set of locks associated with each of
those variables. Because s; contains no lock exits and a thread cannot die while
holding a lock (as shown earlier), ¢ must hold no locks at all during s;. This means
that there can be no shared variables accessed by s;. With no dependencies
between s; and the intervening code, moving s; to the end of s does not affect

whether or not the assertion is violated.

e If s; contains lock exits, split s; into two segments, the first from the beginning of
s; until its last lock exit, and the second from after its last lock exit until the end
of s;. Splitting it into two segments is a valid operation because a thread switch to
the currently running thread does not change the execution in any way. Now the
second of the newly created segments falls under the first case above. We leave the

first segment alone.

We now have an S’ that executes the same instructions as S. Each transformation
does not affect the condition that triggered the assertion violation; each instruction of S’
receives the same inputs as the corresponding instruction in S. Thus the condition that
triggered the assertion violation will be reached in S’ just as it is in S.

S’ is an exit-block schedule. This follows from the process by which S’ was created
from S: S’ consists of segments that all end with lock exits, except for those that end in
thread deaths. By Theorem 2, ExitBlock produces all exit—block schedules of P. Thus the
ExitBlock algorithm produces S’, a schedule in which the same assertion is violated as in

S. O
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2.4 The ExitBlock-RW Algorithm

The ExitBlock algorithm executes all schedules of atomic blocks. However, all schedules
need not be executed in order to find all possible assertion violations. If two atomic blocks
have no data dependencies between them, then the order of their execution with respect
to each other has no effect on whether an assertion is violated or not. The ExitBlock-
RW algorithm uses data dependency analysis to prune the tree of schedules explored by
ExitBlock.

As an example, consider again the tree from Figure 2.8, which is repeated here as
Figure 2.10. The rightmost branch represents the ordering 6,7,1,2,3,8,9,10,4,5. Code
sections 4 and 5 only share locks with section 7 of the other thread. This means that 4
and 5 can have data dependencies only with 7 and with no other code sections of the other
thread. We have already considered 4 and 5 both before and after 7 in earlier branches. So
why should we execute 4 and 5 at the end of this last branch? If there were an assertion
violation produced only when 4 and 5 were executed after 7, we would already have found
it. Thus we can trim the end of the rightmost branch.

We take advantage of this observation as follows. We record the reads and writes
performed while executing an atomic block. Instead of delaying just the current thread and
re—enabling it after the first step in the new branch, we keep a set of delayed threads along
with the reads and writes of the atomic block they performed just before the new branch was
created. We only re—enable a delayed thread when the currently executing thread’s reads
and writes intersect with the delayed thread’s reads and writes. If no such intersection
occurs, then none of the later threads interact with the delayed thread and there is no
reason to execute schedules in which the delayed thread follows them. The intersection is
computed as follows: a pair consisting of a set of reads and a set of writes (r1,w;) intersects
with a second pair (rg,ws) if and only if (w1 Nwe # OV ri Nwe # O Vwy Nre # 0).

We call the ExitBlock algorithm augmented with this read—write pruning ExitBlock-
RW. Pseudocode for the changes to ExitBlock required for ExitBlock-RW is given in Figure
2.12. Note that the algorithm uses the reads and writes performed during the first execution
of an atomic block A to check for data dependencies with other threads’ atomic blocks. What
if A performs different reads and writes after being delayed? Since we never execute past

a block that interacts with any of A’s variable accesses without re—enabling A, no blocks
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T2 T1 T2 T1

1oi si 1oi 5
() () () ()

Figure 2.10: This is the tree of schedules explored by ExitBlock for the threads in Figure
2.11. Threads in parentheses are delayed. Arrows indicate the execution of the sections
of code on their left. An X means that a path was aborted because a lock could not be
obtained. (This figure is a duplicate of Figure 2.8.)

Thread 1 =

1 <arbitrary code>

2 synchronized (a) { <arbitrary code>

3: synchronized (b) { <arbitrary code> }
4 <arbitrary code> }

5 <arbitrary code>

Thread 2 =

6: <arbitrary code>

7: synchronized (a) { <arbitrary code> }
8: <arbitrary code>

9: synchronized (b) { <arbitrary code> }

10: <arbitrary code>

Figure 2.11: Two threads, one containing nested synchronized regions. We divide Thread
1 into atomic blocks 1,2,3 and 4,5, and Thread 2 into atomic blocks 6,7 and 8,9,10. There
is a data dependency between code sections 2 and 7, but otherwise the two threads are
independent. (This figure is a duplicate of Figure 2.6.)
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executed while A is delayed can affect the reads and writes it would perform upon being
re—enabled.

The ExitBlock-RW algorithm’s schedules for the threads in Figure 2.11, assuming
that the only inter—thread data dependency is between sections 2 and 7, are shown in Figure

2.13.

2.4.1 Number of Schedules Executed by ExitBlock-RW

If no blocks interact, no thread we delay ever becomes reenabled. For each schedule, each
thread runs a certain amount, gets delayed, and never wakes up. (Of course, there is at
least one schedule for each thread that executes that thread until it dies.) Thus we can
consider the problem of creating each schedule simply that of deciding where to cut off each
thread; by arranging the thread sections end-to-end we have the schedule. The sections
have the property that the section of thread i must precede that of thread j if ¢ is started
first in the program.

For a program with k threads that each obtain locks a total of n times, with abso-
lutely no interactions between the atomic blocks, we have n + 1 places to terminate each
thread, and it does not matter where we terminate the last thread of each schedule; thus
we have (n + 1)*~! different schedules. This number will be lower if some threads cannot
run until others finish, or other constraints are present, and higher if interactions between
blocks exist (potentially as high as ExitBlock’s formula if every block interacts with every
other, which fortunately is very unlikely).

This best—case result, polynomial in the number of locks per thread and exponential
in the number of threads, is much better than the growth of ExitBlock which is exponential
in the number of locks per thread. The number of threads in a program is typically not very
high, even for large programs, while the code each thread executes can grow substantially.
Thus in the best case the ExitBlock-RW algorithm achieves polynomial growth.

The important question is, how often is the best case achieved? The number of
interactions between threads in a program is usually kept to a minimum for ease of pro-
gramming. So it appears likely that the typical number of paths that ExitBlock-RW needs

to explore is closer to the best case result than the worst case result.

51



BEGIN:
run program normally until 2nd thread is started, then:
delayed = {}

LOOP:
if (enabled is empty)

pop (RetPt, saved_enabled, saved_delayed, wait,
nonotify) off of stack

change execution state back to RetPt

delayed = saved._delayed

reads = writes = {}

run curThread until one of the following events occurs:
if (curThread performs a read)
record it in the reads set
if (curThread performs a write)
record it in the writes set

if (lock_exit)
save_enabled old_enabled minus curThread
save_delayed = delayed plus (curThread, reads, writes)
push on stack (RetPt, save enabled, save delayed, wait, {})
foreach (thread, r, w) in delayed

if ((r,w) intersects (reads,writes))
move thread from delayed set to enabled set
move all threads in lock’s blocked set to enabled set
goto LOOP
DONE: // testing is complete!

Figure 2.12: Changes to the ExitBlock pseudocode of Figures 2.7 and 2.9 for the ExitBlock-
RW algorithm. This algorithm records the reads and writes performed during atomic blocks
and only interleaves two blocks if their read and write sets intersect.

52



TL,T2-------=-==-=-- T2, (Tl 5 o)
1,2, 3l 6. 4
T1,T2----- T2,(T1,) T2, T1----- T1, (T2 4)
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10l 5
() 0

Figure 2.13: Tree of schedules explored by ExitBlock-RW for the threads in Figure 2.6
on page 34, with the only inter-thread data dependency between code sections 2 and 7.
Threads in parentheses are delayed, with subscripts indicating the code sections over which
read/write intersections should be performed. Compared to the tree for ExitBlock shown
in Figure 2.10, this tree does not bother finishing the schedule 6,7,1,2,3,4,5.. .. and does not
execute at all the final schedule of the other tree (6,7,1,2,3,8,9,10,4,5).

2.4.2 Correctness Proof for ExitBlock-RW

Theorem 4 Consider a program P that meets the testing criteria defined in Section 2.1.
Suppose that for a given input and when executed on a single processor P produces an
assertion wviolation. Let T = {t1,...,t,} be the set of threads that P started during its
execution, and let S = s189...8m,m be the schedule of these threads that led to the assertion
violation. A schedule S" exists that is produced by the ExitBlock-RW algorithm in which the

same assertion is violated.

Proof: We start by applying the transformations listed in the proof of Theorem 3 to S,
resulting in an exit-block schedule S’ that leads to the same assertion violation as S. Now
we apply the following transformation to each segment s, of S':

If s, has a segment s;_; to its left (i.e., ¢+ > 0), and s_; is not a segment of the
same thread as s, and s} has no data dependencies with s;_,, swap the order of the two

segments. Move each segment in this way as far as possible to the left.
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This transformation shifts segments to the left over all intervening independent
segments. The resulting schedule S” contains no segments that can be shifted to the left
in this manner. Furthermore, S” contains the same assertion violation as S, since only the
order of independent segments has changed from S'.

ExitBlock-RW produces, for each schedule produced by ExitBlock, a prefix (not
necessarily proper, but necessarily not empty) of that schedule. The prefix cannot be
empty because ExitBlock-RW starts with the same set of enabled threads as ExitBlock and
produces a separate top-level branch for each one, just like ExitBlock. Prefixes that are
ended short of the full schedule contain at the end at least one delayed thread that was not
re—enabled.

Assume that S” is not a schedule produced by ExitBlock-RW. Since S” is produced
by ExitBlock (the transformations from S’ to S” do not change the fact that the schedule
is an exit—block schedule, since the composition of each segment is unchanged), ExitBlock-
RW must produce a prefix of S”. This means that at least the final atomic block of S”
was independent of the stored reads and writes of all delayed threads in the delayed set
that was present when the prefix ended (otherwise at least one delayed thread would have
been re-enabled and S” would be longer than it is). But this is a contradiction, since then
S" could have further transformations applied to it. Thus we must conclude that S” is a

schedule produced by ExitBlock-RW. O

2.5 Detecting Deadlocks

A deadlock is a cycle of resource dependencies that leads to a state in which all threads
are blocked from execution. Two kinds of cycles are possible in Java programs; if the cycle
is not one of locks, then it must involve some or all threads in a wait state and the rest
blocked on locks. We will refer to deadlocks consisting solely of threads blocked on locks
as lock—cycle deadlocks, which will be discussed in the next section, and those that contain

waiting threads as condition deadlocks, which will be discussed in Section 2.5.2.

2.5.1 Lock—Cycle Deadlocks

The ExitBlock algorithm rarely executes schedules that result in lock-cycle deadlocks.

(When it does it simply aborts the current branch in the tree of schedules.) Consider
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Thread 1 =

1: <arbitrary code>

2 synchronized (a) { <arbitrary code>

3 synchronized (b) { <arbitrary code> }
4: <arbitrary code> }

5 <arbitrary code>

Thread 2 =

6: <arbitrary code>

7: synchronized (b) { <arbitrary code>

8: synchronized (a) { <arbitrary code> }
9: <arbitrary code> }

10: <arbitrary code>

Figure 2.14: Two threads with the potential to deadlock. If the code sections are executed
in any order where 2 precedes 8 and 7 precedes 3 (for example, 1,2,6,7) then a deadlock is
reached in which Thread 1 holds lock a and wants lock b while Thread 2 holds lock b and
wants lock a.

the threads in Figure 2.14 and the schedules that the ExitBlock algorithm produces for
these threads, shown in Figure 2.15. In order for deadlock to occur, Thread 1 needs to be
holding lock a but not lock b and Thread 2 needs to be holding lock b but not lock a. This
will not happen since for ExitBlock the acquisitions of both locks in each thread are in the
same atomic block. Deadlocks are only executed in rare cases involving multiply nested
locks.

In order to always detect deadlocks that are present, we could change our definition
of atomic block to also end blocks before acquiring a lock while another lock is held. This
would cause ExitBlock to directly execute all schedules that result in lock—cycle deadlocks;
however, this is undesirable since it would mean more blocks and thus many more schedules
to search. Instead of trying to execute all deadlocks we execute our original, minimal
number of schedules and detect deadlocks that would occur in an unexplored schedule.

The key observation is that a thread in a lock—cycle deadlock blocks when acquiring
a nested lock, since it must already be holding a lock. Also, the lock that it blocks on
cannot be the nested lock that another thread in the cycle is blocked on, since two threads
blocked on the same lock cannot be in a lock cycle. The cycle must be from a nested lock
of each thread to an already held lock of another thread. For example, when the threads
of Figure 2.14 deadlock, Thread 1 is holding its outer lock a and blocks on its inner lock b

while Thread 2 is holding its outer lock b and blocks on its inner lock a.
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Figure 2.15: Tree of schedules explored by ExitBlock for the threads in Figure 2.14. Reverse
lock chain analysis will detect two deadlocks, one at each aborted path (denoted by a large
X in the figure). Threads in parentheses are delayed.

These observations suggest the following approach. We track not only the current
locks held but also the last lock held (but no longer held) by each thread. Then, after we
execute a synchronized region nested inside some other synchronized region, the last lock
held will be the lock of the inner synchronized region. When a thread cannot obtain a lock,
we look at the last locks held by the other threads and see what would have happened if
those threads had not yet acquired their last locks. We are looking for a cycle of matching
outer and inner locks; the outer locks are currently held by the threads and the inner locks
are the threads’ last locks held. If the current thread cannot obtain a lock I and we can
follow a cycle of owner and last lock relationships back to the current thread — if I’s current
owner’s last lock’s current owner’s last lock’s ... ever reaches a current owner equal to the
current thread — then a lock—cycle deadlock has been detected. We call this reverse lock
chain analysis. 1t is straightforward to implement, and since failures to acquire locks are
relatively rare it does not cost much in performance.

In Figure 2.15, the two large X’s indicate paths that were terminated because a lock

could not be obtained. These are the points where reverse lock chain analysis occurs. At
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Thread 1 =
1: <arbitrary code>

2: synchronized (a) { <arbitrary code> }
3: <arbitrary code>

4: synchronized (b) { <arbitrary code> }
5: <arbitrary code>

Thread 2 =

6: <arbitrary code>

7: synchronized (b) { <arbitrary code> }
8: <arbitrary code>

9: synchronized (a) { <arbitrary code> }

10: <arbitrary code>

Figure 2.16: Two threads that do not fool reverse lock chain analysis. At first glance these
threads appear to contain what the analysis would report as a lock cycle; however, the
analysis will never even be performed since there are no nested locks.

the first point, thread T1 holds lock a and last held lock b. Thread T2 holds b and fails in
its attempt to obtain a. The analysis performed at this point finds the following cycle: a’s
current owner is T1, whose last lock is b, whose current owner is T2, the current thread. At
the second point a similar analysis discovers the same deadlock in a different schedule.

Reverse lock chain analysis does not detect false deadlocks. For example, although
the threads in Figure 2.16 contain a cycle of last lock held and currently owned relationships,
since there are no nested locks in either thread there will be no failures to obtain locks and
thus no analysis will be performed.

We can improve performance by using reverse lock chain analysis with ExitBlock-
RW rather than with ExitBlock. This seems to work well in practice. For all of the example
programs in Chapter 4 that contain lock—cycle deadlocks, ExitBlock-RW plus analysis finds
them.

However, this optimization comes at a cost. ExitBlock-RW plus reverse lock chain
analysis does not always find deadlocks that are present. Figure 2.17 shows a counterex-
ample. ExitBlock plus analysis finds the deadlock in this program, while ExitBlock-RW
does not. The tree of execution paths for ExitBlock on the program is shown in Figure
2.18. The potential deadlock is detected in two different places. Figure 2.19 shows the
tree of schedules for ExitBlock-RW on the program (none of the regions of code of the two
threads interact with the other thread at all). The pruning performed by ExitBlock-RW

has completely removed the branches of the tree that detect the deadlock.
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Thread 1 =

1: <arbitrary code>

2 synchronized (a) { <arbitrary code>

3 synchronized (b) { <arbitrary code> }
4: <arbitrary code> }

5 <arbitrary code>

Thread 2 =

6: <arbitrary code>

7: synchronized (a) { <arbitrary code> }

8: <arbitrary code>

9: synchronized (b) { <arbitrary code>

10: synchronized (a) { <arbitrary code> }
11: <arbitrary code> }

12: <arbitrary code>

Figure 2.17: Two threads whose potential deadlock will be caught by reverse lock chain
analysis in ExitBlock (see Figure 2.18) but not in ExitBlock-RW (see Figure 2.19). None
of the regions of code interact.

An idea we have not yet explored is to have ExitBlock-RW consider a lock enter
to be a write to the lock object; this would certainly prevent the pruning of the deadlock
situations in this example, but we have not proved it would always do so. We do prove in
Section 2.5.3 that ExitBlock plus reverse lock chain analysis guarantees to find a deadlock

if one exists. In the next section we discuss detecting condition deadlocks.

2.5.2 Condition Deadlocks

Condition deadlocks involve a deadlocked state in which some of the live threads are waiting
and the rest are blocked on locks. The tester can detect condition deadlocks by simply
checking to see if there are threads waiting or blocked on locks whenever it runs out of
enabled threads to run. We call the combination of this checking with ExitBlock and
reverse lock chain analysis the ExitBlock-DD algorithm. The same combination but with
ExitBlock-RW we call ExitBlock-RWDD.

ExitBlock-RWDD cannot use the same condition deadlock check as ExitBlock-DD
because of its delayed thread set. We only delay threads to prune paths, so if we end a path
with some waiting threads but also some delayed threads, we have not necessarily found a
deadlock since nothing is preventing the delayed threads from executing and waking up the

waiting threads. As an example, consider the programs in Figure 2.20 and Figure 2.21. Fig-
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Figure 2.18: Tree of schedules explored by ExitBlock for the threads in Figure 2.17. Threads
in parentheses are delayed.

ure 2.20 contains a program that will condition deadlock if Thread 2 runs before Thread 1.
Figure 2.21 contains a program that will never condition deadlock. If we report a condition
deadlock when a path ends with any threads waiting even if threads are delayed, then we
will correctly report the condition deadlock in Figure 2.20 but we will incorrectly report a
condition deadlock for Figure 2.21. Figure 2.22 shows the trees for the two programs.
Thus, to avoid reporting false condition deadlocks in ExitBlock-RWDD, we must not
report condition deadlocks when there are delayed threads. We could attempt to execute
the delayed threads to find out if there really is a condition deadlock; however, there is
no way to know how long they might execute. We have not fully investigated this idea.
ExitBlock-RWDD does successfully detect condition deadlocks in the example programs in
Chapter 4, and we can prove that ExitBlock-DD will find a deadlock if one exists. Because of
this, the implementation of our tester has two modes: the default uses ExitBlock-RWDD for

efficiency, while the second mode uses ExitBlock-DD in order to guarantee to find deadlocks.
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Figure 2.19: Tree of schedules explored by ExitBlock-RW for the threads in Figure 2.17.
Threads in parentheses are delayed, with subscripts indicating the code sections over which
read/write intersections should be performed.

Thread 1 =

1: <arbitrary code>

2:  synchronized (a) { a.wait();
3: a.notify(); }

4: <arbitrary code>

Thread 2 =

5: <arbitrary code>

6 synchronized (a) { a.notify();
7: a.wait(Q); }

8 <arbitrary code>

Figure 2.20: If Thread 2 executes before Thread 1 there will be a condition deadlock —
both threads will be waiting and there will be no one to wake them up.
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Thread 1 =

1: <arbitrary code>

2 synchronized (a) { a.notify();
3: a.wait();

4: a.notify(); }

5 <arbitrary code>

Thread 2 =

6: <arbitrary code>

7: synchronized (a) { a.notify();
8: a.wait();

9: a.notify(); }

10: <arbitrary code>

Figure 2.21: Two threads that have no potential condition deadlocks. However, ExitBlock-
RW’s pruning (see Figure 2.22) leads it to end a path with Thread 1 waiting; it cannot tell
the difference between this and the real condition deadlock present in the threads in Figure
2.20.

T, T2----- T2, (T1, ,) T, T2----- T2, (T1, , )
1,2i 56,7 1 2,3i 6. 7.8
T2, W( T1) wW(T2), (T1, ,) T2, W( T1) W(T2), (TL, 5 )
5, 6i condition 0, 7i condition
deadlock deadlock?
T2, a(T1) T2,a(T1)
7& |
T1, W( T2) T1, W( T2)
| g
T1, a(T2) T1, a(T2)
g |
T2 T2
8 9, 10i
O O

Figure 2.22: The tree on the left is the tree of schedules explored by ExitBlock-RW for the
threads in Figure 2.20. The tree on the right is for the threads in Figure 2.21. Threads in
parentheses preceded by a w are in the wait set, preceded by an a are in the blocked set for
lock a, and in plain parentheses are delayed (with subscripts indicating the code sections
over which read/write intersections should be performed).
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Thread 1 =

1 <arbitrary code>

2 synchronized (a) { <arbitrary code>
4 synchronized (b) { a.wait();

5: <arbitrary code> }

6 <arbitrary code> }

7 <arbitrary code>

Thread 2 =

8: <arbitrary code>

9:  synchronized (b) { <arbitrary code>
10: synchronized (a) { a.wait();
11: <arbitrary code> }

12: <arbitrary code> }

13: <arbitrary code>

Figure 2.23: These two threads contain both a lock—cycle deadlock and a condition deadlock.
The tester will only detect the condition deadlock, however.

2.5.3 Correctness Proof for ExitBlock-DD

ExitBlock-DD guarantees to find a deadlock if one exists, but no guarantees are made on
what type of deadlock will be found if both types exist. For example, when ExitBlock-DD is
run on the program in Figure 2.23 it detects the condition deadlock but not the lock—cycle

deadlock.

Theorem 5 Consider a program P that meets the testing criteria defined in Section 2.1.
(a) Suppose that P enters a deadlock for a given input when ezecuted on a single processor.
Let S = s182...5m, be the schedule of the set of threads T = {t1,...,t,} that led to the
deadlock. Then a schedule is produced by the ExitBlock-DD algorithm in which a deadlock
is detected (though not necessarily the same one).

(b) Furthermore, if there are no schedules of P that result in a deadlock, the ExitBlock-DD

algorithm will not detect any deadlocks.

Proof of (a): First we prove that if a deadlock can occur, ExitBlock-DD will detect one.
We apply the same transformations as in the proof of Theorem 3 to S to get S'. We
consider the final segment of each deadlocked thread to end in “thread death” to satisfy
that theorem’s assumptions. This means that threads can be holding locks when they “die”,
but Theorem 3 does not require that they do not. Schedule S’ is an exit—block schedule
except for the final segments of the deadlocked threads.
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Now we proceed by cases on what type of deadlock P entered. The three cases are
differentiated by the number of threads waiting — all, some, or none. The first two cases

are condition deadlocks while the third is a lock—cycle deadlock.

1) If all deadlocked threads are waiting, then S’ is an exit-block schedule since all the
deadlocked threads end in a lock exit (wait performs a lock exit). Thus ExitBlock-DD will
execute S’ and detect the deadlock.

2) If at least one deadlocked thread is waiting and at least one is blocked on a lock, we
first discuss a special sub—case. The argument for the sub—case in which all but one of the
deadlocked threads are waiting (the other is blocked on a lock) is simpler than the general
case. If all threads but one in S’ are waiting ExitBlock-DD will attempt to execute S’ since
it tries every exit—block schedule. All threads but the one blocked on the lock are at lock
exits, and ExitBlock-DD will attempt to execute the non—waiting thread; when it fails to
obtain its lock, the path will terminate and the condition deadlock will be detected.

For the general case in which at least one of the deadlocked threads is waiting, but
not all (the rest are blocked on locks), let S” be the schedule that is identical to S’ except
that the threads blocked on locks have not executed as far as they have in S’ — each
has just finished its respective previous lock exit. This is possible because backing them
up in this way cannot affect interactions between them: if one of them modifies a shared
variable, no other thread can view the change until the modifying thread releases the lock
protecting the variable. Since we have not crossed any lock exits in backing up, there can
be no communication between the backed—up threads. Now ExitBlock-DD will try all exit—
block schedules starting with S”, a partial exit—block schedule. We know that one order of
execution of the backed—up threads leads to a condition deadlock, so ExitBlock-DD must

detect that deadlock since it tries all orders of threads from S”.

3) If all deadlocked threads are blocked on locks, we have a lock—cycle deadlock and so
there must be a cycle of lock dependencies. Each thread ¢; in the cycle must be holding a
lock that another of the threads wants; call that lock h;. Call the lock that ¢; wants w;.
Thus every w; matches up with an hj, 7 # j, and vice versa. There must be a cycle in the
relationship between w and h. Since thread ¢; is holding h; when it attempts to acquire

w;, and since locks in Java must be properly nested, the synchronized region of w; must be
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completely contained inside of the synchronized region of h;.

Let S” be the schedule identical to S’ except that each thread ¢; is backed up to the
lock exit prior to its acquisition of h;. We can do this without affecting program behavior by
the same argument as in case 2. ExitBlock-DD will execute the partial exit—block schedule
S" and will attempt to execute all thread orderings from S”. We want to execute them
forward beyond where they deadlocked to get them into a configuration where every thread
t; has just released w;, except for one thread ¢; who blocks acquiring w;. At this point
reverse lock chain analysis will detect the lock—cycle deadlock. However, many things could
prevent the threads from executing forward to reach that configuration. We need to show
that all of those obstacles produce other deadlocks that will be detected.

Each thread #; will execute forward, obtaining and then releasing w;. This will
happen in S” since in S’ it was trying to obtain w; and thus eventually releasing it; this
behavior cannot be different in S”. The behavior cannot change since if some other thread
t; modifies a shared variable to communicate with ¢;, ¢; has to have held the lock for that
variable before it obtained h;, and therefore cannot exit that lock to allow #; to read the
shared variable until after it exits hj. Thus each ¢; will attempt to execute forward until

the exit of w;. It may not reach the exit, however. We split this case into two sub—cases:

A. If each thread t; up to one last thread t; (i # j) is successful in reaching the lock exit
for w;, then ¢; will successfully obtain h; (since the thread that wanted it has released
it) but not w; (since the other threads still hold their h;’s). Note that this can only
happen if the threads are executed in an order such that if w; = h; then #; executes
before ¢;. At this point reverse lock chain analysis will see that ¢; cannot obtain w;,
whose current owner must be one of the t;, say tjo (j2 # j), whose last lock held
must be wjs (because every t; but t; just executed the lock exit of w;), whose current
owner must be yet another of the ¢;, say t;3 (j3 # j2 # j), etc. Because the w; <> h;
relationship is a cycle no matter what w; we start with, we will end up at the one
who started it all, h;, whose owner, ¢;, is the current thread. Thus ExitBlock-DD will

report a lock—cycle deadlock.

B. If more than one thread does not reach its destination, then each such thread t; either
performs a wait on some object whose lock is not equal to w; or blocks on a lock.

This prevents the next thread in the cycle from executing, which will prevent the next
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thread, and so on. (Only a wait on the object whose lock is w; will not do so, but it
will involve a lock exit of w;.) Only the threads in the cycle that have already been
executed will not be stuck. If those threads can execute to completion and enable
one of the remaining threads to execute (by either performing a notify or releasing a
lock) then we have a condition deadlock in a different schedule where the free threads
execute to completion first and the rest of the threads are now stuck with no threads
to free them on their way to the lock exit for w;. If the free threads cannot free the
other threads then we have a condition deadlock also, in this schedule. Thus if more
than one thread ¢; cannot execute to the lock exit of w; then a deadlock — not the

lock—cycle one, but some condition deadlock — will be detected.

This proves the first part of the theorem.

Proof of (b): Now we need to show that if ExitBlock-DD detects a deadlock, that deadlock
can occur (i.e., we produce no false positive results). If reverse lock chain analysis finds
a lock cycle, and we back up every thread in the cycle (except for the current thread) to
before the lock enter for its last lock held, the threads will still be holding the same locks
as in the deadlock because Java locks are properly nested. Now every thread is about to
execute a lock enter on a lock that another thread holds — the system can clearly reach a
deadlocked state. Thus, if ExitBlock-DD’s reverse lock chain analysis ever claims a lock—
cycle deadlock could occur, there exists a schedule that does deadlock. As for condition
deadlocks, if a schedule ever ends with all live threads blocked on locks or waiting, then

that schedule obviously represents a real condition deadlock. O

2.6 Enhancements

Two ideas mentioned in Section 2.5 have not been investigated yet. One is to have
ExitBlock-RW consider a lock enter to be a write to the lock object, which will allow
it to detect more lock—cycle deadlocks. The penalty in extra paths considered should not
be too high since atomic blocks sharing the same lock often have data dependencies anyway.

The other idea is to have ExitBlock-RW, when it would declare a condition deadlock
except for delayed threads being present, execute those delayed threads to determine if it

truly is a condition deadlock. This may have performance penalties since the delayed threads
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could end up executing for a long time. However, if these two ideas combined provided a
guarantee that ExitBlock-RW found a deadlock if one existed, they could be turned off in
the more efficient, no deadlock guarantee mode. We have not yet examined whether they
do indeed provide a guarantee.

Further pruning of the schedules considered by ExitBlock-RW is possible while pre-
serving the guarantee that all assertion violations are detected. If the user knows that one
of the program’s methods is used in such a way that it causes no errors in the program, he
or she could instruct the tester to not generate multiple schedules for atomic blocks con-
tained in the method. For example, if a program uses some library routines that it assumes
are thread safe and error free, the user could tell the tester to trust those library routines.
Then every time the tester would normally end an atomic block, it would check to see if
the current method was one of the trusted routines; if so, it would simply keep executing
as though there was not an atomic block boundary there. One instance of this extension is
implemented in our tester as the javasafe option described in Section 3.3, which assumes
that all methods in any of the java.* packages are safe. As shown by the sample programs
in Chapter 4, this option dramatically reduces the number of paths the tester must explore.
In the future this option will become more flexible and allow the user to specify more than
just the core JDK methods.

Another pruning idea is to ignore atomic blocks whose lock object is not shared.
If only one thread ever accesses it then there is no reason to consider possible schedules
encountered while in methods called on that object. Static analysis would be required
to identify objects that are not shared, since dynamically the tester can never be sure if
the next bytecode will end up copying a local object into some shared variable. Static
analysis could provide other information to the tester, such as predetermining which paths
are impossible (because of locks being held) so that the tester does not have to blindly find
out.

Other properties of programs could be checked but are not; for example, starvation
of a thread could be detected when a user—specified amount of time has elapsed since the last
lock acquisition by the thread. However, this time needs to be relatively long in order for
starvation to be an issue. Because the tester cannot currently test long execution sequences

in a reasonable amount of time, it does not bother to check for starvation.
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Chapter 3

Implementation

The systematic tester needs a good deal of control over the execution of the program being

tested, called the client program. In particular, the tester needs:

e The ability to back up: undo a set of state changes in order to return to a previous

state after exploring a partial schedule.

e The ability to control which threads are allowed to run and to put constraints on their

order of execution.

e The ability to control which threads waiting on a condition variable are woken up

when a notify is issued.
e The ability to record all variable reads and writes performed by the client program.

e The ability to deterministically replay all interactions between the client Java code
and the rest of the system, namely input, output, and native methods. This is required
to present a consistent view of the external world to the client program as the tester

executes multiple schedules of the same code.

Tool interfaces for existing Java virtual machines provide features like thread control and
read and write observation. However, they do not provide undo or deterministic replay.
For the tester to implement these features efficiently on a standard virtual machine would
be quite a challenge. We decided to incorporate checkpointing and deterministic replay

directly into a virtual machine that our group was building, called Rivet.
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3.1 Rivet Virtual Machine

Rivet is an extensible tool platform structured as a Java virtual machine. It is designed
to support a suite of advanced debugging and analysis tools for Java programmers. The
systematic tester is one of the initial tools in this suite. Other tools under development
include a tracer and a bidirectional debugger based on [Boo98]. This debugger will support
execution in the reverse direction of program flow, including stepping, execution to the next
breakpoint, and execution until a data value changes. The tester will be integrated with
the debugger so that the tester can be launched from any point while debugging a program.

Many testing, debugging, and analysis tools include similar functionality, such as
access to program data and instructions during execution and control over thread scheduling
and input and output events. These features are already available inside every virtual
machine. Rivet exposes its internal execution environment to tools in a consistent, well-
documented way. Its event system allows tools access to run—time information and control,
and its built—in checkpointing facilities allow tools to undo client program operations.

Another key difference between Rivet and standard Java virtual machines is that
Rivet is itself written in Java. The design of Rivet focuses on modularity, extensibility, and
sophisticated tool support rather than on maximizing performance. We expect Rivet to
be used to execute tools during software development, while a separate, high—performance
virtual machine is used for normal, more efficient operation.

For Rivet to apply in a range of development environments, it avoids platform—
specific code. Since Rivet runs on top of another Java virtual machine, it can make use of
that “lower” virtual machine’s platform—specific features like garbage collection and native
method libraries. This not only made developing initial versions of Rivet simpler by allowing
it to delegate unimplemented functionality to the lower virtual machine, but also ensures
that non—standardized features of the Java environment in the developer’s virtual machine
will remain available when using Rivet. Rivet is designed to use a Just In Time dynamic
compiler (JIT) that translates client program Java bytecodes to bytecodes that execute
directly on the lower virtual machine, relying on the lower virtual machine’s JIT to perform
sophisticated optimizations. Initial performance results from this JIT are encouraging, but
the JIT was not available in time to be used for the experiments in this thesis.

Our systematic tester makes heavy use of Rivet’s checkpointing. Rivet performs
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incremental object checkpointing by versioning client objects. Deterministic replay of input
and output is not yet implemented in the tester, but it will build on Rivet’s deterministic
replay abilities (which do not quite match what the tester needs, as described in Section
3.3.2). Our tester also uses Rivet’s event system and its extra field mechanism, which
allows a tool to add fields usable for its own data storage to client classes. For details of

the implementation of Rivet, see Appendix A.

3.1.1 Performance of Rivet

Tables 3.1 and 3.2 detail Rivet’s performance on six different benchmarks on two different
platforms, JDK1.1.5 on Linux and JDK1.1.6 on Windows NT. On JDK1.1.6 the tests were
run both with the lower virtual machine’s JIT disabled and with its JIT enabled (there
is no JIT for JDK1.1.5 on Linux). The R/J columns show the Rivet time divided by the
Java time, which indicates the slowdown of Rivet. Without an underlying JIT, Rivet is
nearly 200 times slower than the interpreter on which it runs. With an underlying JIT, this
shrinks to 86. The slowdown for the _201_compress test is much larger than this. For the
underlying Java interpreter, the speedup that the JI'T achieves on this test is much greater
than that for the other tests. This is because this test spends all of its time in one loop that
contains only inlinable method calls. Most Java programs are not written like this; they
are written in a more object—oriented fashion with many method calls. Thus, the geometric
mean is also computed excluding this benchmark. It indicates that the slowdown for Rivet
with an underlying JIT is 67.

The final column of Table 3.1 shows that the speedup the JIT achieves for Rivet is
very high, with an average of over 5. Rivet’s uniformly high speedup causes us to expect that
as high—performance virtual machines become available and JIT’s get faster, the slowdown
of Rivet will decrease.

In addition, Rivet’s own JIT has not been completed yet. Initial performance num-
bers shown in Table 3.3 indicate that Rivet’s JIT will lead to a factor of two speed improve-
ment. We are also investigating automatic translation of Rivet to C.

The specific costs due to Rivet’s events, extra fields, and checkpointing features, all
of which are used heavily by the tester, are analyzed in detail in the sections describing

each individual feature in Appendix A.
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Benchmark NT JDKD1.1.6, no JIT NT JDK1.1.6 with JIT | noJIT/JIT

Java Rivet | R/J | Java | Rivet R/J | Java | Rivet
_201_compress 55.1 151773 | 276 | 5.4 | 2587.4 478 | 10.2 5.9
-202_jess 10.7 2126.5 | 199 | 6.3 | 335.1 53 | 1.7 6.3
-205_raytrace 17.9 4456.4 | 249 | 9.6 | 885.8 92| 1.9 5.0
-209_db 7.0 1131.9 | 162 | 3.9 | 185.0 47| 1.8 6.1
_227_mtrt 25.8 5493.8 | 213 | 14.0 | 1108.2 79 1.8 5.0
JavaCUP 10.0 1261.2 | 126 | 5.9 | 266.6 45 | 1.7 4.7
geometric mean 198 86 2.4 5.5
geometric mean without _201_compress | 185 67 1.9 5.2

Table 3.1: Time taken in seconds to run six different benchmarks on JDK1.1.6 on Windows
NT on a Pentium II 300 MHz machine with 128MB RAM. The first five benchmarks are

from the SPEC JVM Client98 Release 1.01 benchmark suite [SPEC]. They were each run
with the -s10 flag. These are not official SPEC results. The JavaCUP benchmark involved

running JavaCUP [CUP] on the syntax of the Java language.

enabled.

Table 3.2: Time taken in seconds to run six different benchmarks on JDK1.1.5 on Linux on
a Pentium II 200 MHz machine with 128MB RAM. The first five benchmarks are from the

The Rivet JIT was not

Benchmark Linux JDK1.1.5

Java Rivet | R/J
-201_compress 138.6 25539.8 | 184
-202_jess 15.7 3325.5 | 212
_205_raytrace 29.7 6738.8 | 227
-209_db 12.0 1679.9 | 139
227 _mtrt 34.4 8284.8 | 241
JavaCUP 14.2 1824.5 | 129
geometric mean 184
geometric mean without 201 _compress | 178

SPEC JVM Client98 Release 1.01 benchmark suite [SPEC]. They were each run with the

-s10 flag. These are not official SPEC results. The JavaCUP benchmark involved running

JavaCUP [CUP] on the syntax of the Java language. The Rivet JIT was not enabled.
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Test Platform | Underlying JIT? | Rivet w/o JIT | Rivet + JIT | Speedup
Straight | Linux No 141.08 42.86 3.3
Windows No 93.03 28.57 3.3
Windows Yes 9.24 2.49 3.7
Invoke | Linux No 148.90 56.27 2.6
Windows No 99.84 38.40 2.6
Windows Yes 10.07 6.44 1.6

Table 3.3: Time taken in seconds to run 50000 iterations of two versions of a loop.
The “straight” version simply contains 207 bytecodes consisting of integer operations,
getfields, and putfields. The “invoke” version adds an invokevirtual to the loop.
The platforms are Sun’s JDK1.1.6 on Windows NT on a Pentium IT 300 MHz machine
with 128MB RAM and JDK1.1.5 on Linux on a Pentium IT 200 MHz machine with 128MB
RAM.

3.1.2 Limitations of Rivet

Rivet’s implementation in Java makes some requirements on the behavior of the native
methods in client programs. Rivet handles violations of these requirements in the core JDK

on a case—by—case basis.

e Native methods must not construct Java objects without calling Java constructors;
otherwise the objects they construct will be incompatible with Rivet’s client object

representation.

e Native methods must not block; otherwise Rivet’s preemptive thread scheduler will

not operate properly.
e For deterministic replay to work, native methods cannot perform any input or output.

o Neither checkpointing nor thread switches can occur in Java methods called by native
methods, since Rivet cannot checkpoint the state of the lower virtual machine in order
to return to a point midway through a native call. So long as any Java methods called

from native methods are short this should not pose a serious problem.

e Native methods should not perform field accesses on other than the “this” object
in order for Rivet’s incremental checkpointing to correctly version objects that have

changed.
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e Native methods must not use direct hardcoded offsets for field access; they should use
the Java Native Interface. This is a consequence of Rivet’s extra field mechanism (see

Section A.5).
e Native methods should not keep native state, since Rivet cannot checkpoint such state.

Only the last two limitations significantly affect Rivet’s applicability. Well-
constructed programs’ native methods normally satisfy all the other requirements. The
Java Native Interface is being promoted to solve the problem of binary compatibility across
multiple versions of Java virtual machines; we expect programs to use it in the future.
However, current JDK native libraries (such as java.io use direct field offsets which Rivet
handles as a special case by re-implementing those libraries.

The final requirement, that client programs keep no state at the native level, could
be removed by providing a native library that a client’s native code would use to allocate
memory, registering it for native—level checkpointing. For more details on Rivet, refer to

Appendix A.

3.2 Eraser

We have implemented the Eraser algorithm [S+97] described in Section 2.1.1. It is used
by the tester to check that client programs follow the mutual-exclusion locking discipline
which is essential to the ExitBlock algorithm. In addition to being runnable by the tester,
Eraser is implemented as a tool in its own right.

Our implementation of Eraser for Java is considerably simpler than the implemen-
tation of Eraser described in [S+97], which operated on arbitrary Alpha binaries. For
arbitrary binaries every single memory location must be considered a variable, while in
Java only field instances and array elements need to be considered variables.

To store the information about each variable that the Eraser algorithm needs, we
associate a hashtable with every client object and an additional table with every client class.
Since each field of an object or class is a separate variable, these tables map a field name (or
array index, for array objects) to information about that variable: its state (see Figure 2.1
on page 28), the thread that last accessed it, and its candidate set of locks. The candidate
set of locks for a variable v, denoted C(v) in [S+97], is the set of locks that was held by

every thread that has accessed v at the time of the access.
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Object A »| hashtable variableinfo

) . - lock set
field2: fidld2 state: read-write lockl, lock2, ...
thread:

variableinfo

C(v): - lock set
state: exclusive lock1, lock2, ...
thread:

Y

Thread 1 - lock set

lock1, lock?2, J

-

Figure 3.1: Eraser associates a hashtable with each object (and class) that holds information
on its fields. For each field the table stores its state (see Figure 2.1 on page 28), the last
thread that accessed it, and its candidate lock set C'(v). Eraser also associates a lock set
with each thread.

Eraser uses Rivet’s extra field mechanism (described in Section A.5) to add a field
to java.lang.0Object which holds the table for the instance fields of each instrumented
object. For low—level implementation reasons, it turned out to be inefficient to use the
extra field mechanism for static fields. Instead Eraser stores the tables for static fields in a
hashtable keyed on client classes.

For each thread in the client program, Eraser keeps track of the collection of locks
that the thread currently owns. Eraser adds a field to java.lang.Thread to hold this lock
set. Figure 3.1 illustrates the data that Eraser stores for each object and thread.

Eraser operates by allowing the program to execute normally. On every lock enter
and exit, Eraser updates the lock set of the current thread. On every field and array
element read and write, Eraser updates the information associated with the accessed variable
according to the rules of the algorithm. If Eraser detects a locking discipline violation it
prints an error message indicating which variables and threads are involved in the violation.

Using Rivet’s tool interface, implementing the Eraser algorithm was relatively sim-
ple. The main complexities came from making it checkpointable for use with the tester (see

Section A.6.2).
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3.3 Tester

Our tester implements the ExitBlock-RWDD and ExitBlock-DD algorithms described in

Chapter 2. It has several parameters which are passed to it as command-line arguments:

eraser — Runs Eraser in parallel with the tester.

stop — This parameter causes the tester to halt execution at the first assertion failure
or deadlock detected. Otherwise the tester prints a warning message and continues

execution.

deadlock — Normally the tester executes ExitBlock-RWDD (path pruning plus deadlock
detection). This parameter causes the tester to execute ExitBlock-DD, turning off

path pruning in order to guarantee deadlock detection.

javasafe — As mentioned in Section 2.6, this causes the tester to assume that methods
in classes of any of the java.* packages are correct. The tester ignores synchronized
regions in such methods, considering their scheduling to have no impact on the pro-
gram’s behavior. In the future more flexible options will be available to allow the user

to further aid the tester in reducing the number of schedules considered.

terminateAfter <n> — Not yet implemented. As mentioned in Section 2.1.3, this option
will cause the tester to terminate all threads after n bytecodes, allowing use of the
tester on client programs containing non—terminating threads whose source code is

not available.

In order for the stop option to work, the tester must know when an assertion is
violated. If the client source code is available and modifiable, its assertions can be changed
into downcalls. Rivet’s downcall mechanism is described in Section A.4. Using downcalls,
the client’s assertions can notify the tester when they fail. Using downcall assertions is also
preferable to simply printing something out since such a printout involves synchronized

regions that increase the number of schedules to consider.

3.3.1 Implementation

The tester follows the pseudocode given in Chapter 2. It uses Rivet’s incremental check-

pointing to undo. We considered undoing by re—executing the program from the beginning

74



up to the point of interest using deterministic replay. However, re-execution is not efficient
enough for the large number of times the tester will need to back up. When the tester is
testing a section of a large program, re-executing even once may take a long time if the
section occurs late in the program.

The tester associates with every object an integer identifier that it uses for quickly
intersecting sets of variables, as described later. For every thread it records the last lock
held by the thread — the lock object that the thread last owned, which is used in deadlock
detection (see Section 2.5) — and the atomic blocks executed by the thread, which are used
for debugging and replay purposes. The tester uses Rivet’s extra field mechanism (described
in Section A.5) to store all of this information, adding fields to java.lang.0Object and
java.lang.Thread.

The tester stores the information needed to execute the client program from the end
of one of its synchronized regions to the end of the next (one atomic block) in an instance
of the State class. This information includes: the enabled thread set; the delayed thread set
with, for each delayed thread, the sets of variables read and written before it was delayed;
the checkpoint identifier of the start of this atomic block; the set of threads blocked on locks;
the set of threads to disable at the start of the atomic block to prevent them from being
notified; and a count of threads that are waiting (to detect condition deadlocks). Although
Rivet can tell the tester what threads are blocked on locks at any given time, the tester also
needs to know what threads will block on locks if they are executed. Remember that the
tester aborts paths that end with a blocked thread and returns to the previous checkpoint;
thus those threads are not blocked according to Rivet and the tester must remember that
they will block. (There can be threads that are truly blocked, for example, a thread just
woken up from a wait.) One instance of the State class is stored on a stack for each branch
of the tree of schedules that is yet to be explored.

The tester lets the client program execute normally until a second thread is created.
The tester then begins its main loop by saving a copy of the State (hereafter referred to as
“the old State”) and telling Rivet to disable all the threads in its enabled set, delayed set,
blocked sets, and no_notify lists — all threads, in fact, except those that are waiting and not
on the no_notify list. The tester disables all these threads in order to prevent preemption
and other unwanted thread switches by Rivet’s thread scheduler, and also to prevent threads

from being notified in branches created by notify operations. The no_notify list is cleared
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at this point since its previous value is no longer needed, as explained below.

The tester then chooses a thread from the enabled set, enables it, and executes it.
If the thread blocks on a lock, after performing reverse lock chain analysis to check for a
deadlock (see Section 2.5.1), the tester adds the thread to the old State’s set of blocked
threads and aborts the current path by returning to the old State’s checkpoint and trying
another thread from the enabled set. If the enabled set becomes empty, a condition deadlock
is checked for (a condition deadlock exists if there are no delayed threads but there are some
waiting threads or threads blocked on locks, as explained in Section 2.5.2) and the next State
is popped off the stack. The tester continues its loop with the new State, disabling threads
and cloning the State. When the stack becomes empty the tester is done.

If the running thread exits a lock, the tester re-enables — moves from the blocked
set to the enabled set — all threads blocked on that lock (both those stored in the tester’s
blocked set and those really blocked), and updates the last lock held by the running thread.
Then, if there are other enabled threads, the current atomic block is ended. To end the
block, the tester first moves the current thread from the old State’s enabled set to its
delayed set, storing the reads and writes it just made in its delayed set entry. Then it
moves from the old delayed set to the old enabled set all delayed entries whose reads and
writes intersect with the ones the current thread just performed. How reads and writes are
stored and intersected is discussed below. Finally the tester pushes the old State on the
stack and continues execution of the current thread.

If the running thread performs a wait, the tester increments the number of waiters
and removes the thread from the enabled set; it does not actually keep a set of waiting
threads itself since Rivet will tell it whenever a thread is woken via a notify. It needs
the number of waiters to detect condition deadlocks, though. For a notify the tester first
decrements the number of waiters by the number of threads woken up, then disables all the
newly woken threads, and finally, if any threads still waiting on the notify object are not
disabled, clones the old State and pushes the clone on the stack. The tester cleared the
no_notify set at the beginning of this atomic block, so it checks to see if threads were in the
set by seeing if they are now disabled. Waiting threads are only disabled if they are in the
no_notify set. This way the tester does not need to remove the originally waiting threads
from the no_notify set on each notify operation, as Section 2.3.1 described.

The tester does not currently handle the thread operations suspend and resume. It
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should not prove difficult to add them, as described at the end of Section 2.3.1.

To store the reads and writes performed during an atomic block, the tester uses
two instances of the VarSet class, one for reads and one for writes. Such a pair is stored
with every delayed thread. Variables are represented as triples of ints: a field identifier,
an object instance identifier (the instance whose field this is), and an offset (used for arrays
only). For non-arrays, the offset is -1. For static fields, the instance is -1, while for instance
fields it is the object identifier that is stored with each object. The field identifier is used for
a fast intersection test (an empty intersection is the common case). A global field counter is
incremented every time the tester sees a new field. The global counter begins at 1, reserving
0 for arrays. The reason the tester has its own counter is to keep field identifiers low and
evenly spread from 0 to 31. On every variable access the tester adds the triple for that
variable to the appropriate VarSet. VarSet stores, in addition to a set of triples identifying
the variables, a single int called fields whose n'” bit is on if and only if there is a variable
in the set with a field identifier fid such that fid mod 32 = n. The fast intersection test
between VarSets vs1 and vs2 is then ((vsl.fields & vs2.fields) # 0). Only if this test
passes do we need to check each element of the sets against each other.

The tester, like Eraser, was relatively simple to implement on top of Rivet. Rivet’s
extra fields, checkpointing, and deterministic replay do the hard work for the tester. The
most difficult part of implementing the tester was, as for Eraser, handling extra fields that
must be checkpointed. As explained in Section A.6.2, the current methods for making a
tool’s extra fields checkpointable are complicated and errors in the use of checkpointing can

be difficult to debug.

3.3.2 Deterministic Replay

The tester needs deterministic replay of interactions between Java code and the rest of the
system. This is a different type of deterministic replay than that provided by Rivet (which
is described in Section A.7) — the tester wants to go back in time and execute forward on
a brand-new path in which different threads or methods than before may request the same
input or output or call the same native methods as the previous path. We want these events
to behave as though another path has not already executed. We cannot blindly replay the
events, though, since on the new path a thread could write to a file followed by a read to the

same file that happened before. We should re—execute the read to get the recently written
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data instead of simply supplying the incorrect logged data.

We have not yet implemented the tester’s deterministic replay. However, it will
require Rivet to change its replay to have all input and output pass through an intermediary
that the tester can register with (this intermediary idea is also discussed in Section A.7).
The tester would simply receive a copy of input or output events when not replaying, and
would be able to supply data to replay events instead of re—executing them. The tester
itself will need to store all input and output operations and decide when to replay from
its log and when to issue the actual operation. Native methods may be a challenge; to
replay them we should restrict them to only modifying fields of “this” and then log their
modifications, or else assume that they are functional with respect to their arguments and
the Java state of the system so that we can simply re-execute them. For now we take
this latter approach. We also assume, until we have implemented deterministic replay, that
input and output operations are repeatable (for example, all reads are from files whose
contents do not change).

These assumptions are additional requirements for client programs on top of the
testing criteria of Section 2.1. We must also add Rivet’s requirements on native methods
(Section 3.1.2 summarizes them).

Once Rivet supports graphics, asynchronous AWT events will have to be logged and

replayed. This could be challenging.

3.3.3 Performance

Profiles of testing runs indicate that approximately one-third of the tester’s execution time
is spent on Rivet’s checkpointing. Table 3.4 shows the percentage of time spent making
checkpoints and returning to checkpoints for several testing runs. Improving the perfor-
mance of Rivet’s checkpointing will improve the performance of the tester dramatically.
Section A.6.3 discusses the performance of Rivet’s checkpointing.

Memory management is critical because the tester runs for so long. Table 3.5 lists
the ratio of number of checkpoints created versus number returned to for various testing
runs. As can be seen, at least 7 checkpoints are created for every one returned to. The
number gets much higher when there are many synchronized regions that do not interact
with any other regions, as in the Performance tests. The Performance program is presented

in Section 4.1; it takes two parameters, the first specifying how many threads to create and
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Program Tester Parameters | Paths | Creating | Returning To | Total
Performance 5 5 | javasafe 2801 26% 8% | 34%
Bufferlf *7958 17% 11% | 28%
Deadlock3 deadlock *1250 19% 9% | 28%
Deadlock3 deadlock *5280 23% 10% | 33%
Deadlock3 deadlock *19980 22% 11% | 33%
Deadlock3 deadlock *25007 22% 11% | 33%

Table 3.4: Percentage of time spent creating checkpoints and returning to checkpoints
for several testing runs. A * indicates that the program was not tested in its entirety.
These numbers are for JDK1.1.6 on Windows NT on a Pentium 300MHz machine with
128MB RAM. They were measured with JProbe Profiler [JProbe]. The programs tested
are described in detail in Chapter 4.

the second how many locks each thread should acquire. The threads do nothing but acquire
that many locks each and so do not have data dependencies with each other.

In programs with large numbers of synchronized regions, a strategy of not taking
checkpoints at program points that are very close together and using deterministic replay to
execute to the desired back—up point may be more efficient than taking a checkpoint after
every synchronized region. Another optimization is to not take checkpoints at the beginning
of atomic blocks when there is only one live thread, since such a checkpoint would never be
used.

Chapter 4 gives execution times and the number of schedules executed in testing a

number of example programs.

3.3.4 Future Work

Deterministic replay (described in Section 3.3.2) is unimplemented, as well as the thread
operations suspend and resume; these are all future work items.

To reduce the number of checkpoints taken, the ideas of the previous section should
be explored. These ideas are to not take checkpoints when there is only one live thread,
and to take fewer checkpoints when there are many short atomic blocks, using deterministic
replay to undo to precise locations.

The tester’s algorithm cannot handle asynchronous input, such as AWT events.
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Program Tester Parameters | Paths | Created | Returned To | Ratio
SplitSync 18 131 17 7.7
NoEraser 16 129 15 8.6
Deadlock deadlock 841 6564 848 7.7
Deadlock3 79 665 84 7.9
DeadlockWait deadlock 19 183 24 7.6
BufferIf 22958 | 153286 22957 6.7
BufferNotify 29350 | 208650 29349 7.1
Performance 2 1 10 71 9 7.9
Performance 2 2 11 89 10 8.9
Performance 2 3 12 109 11 9.9
Performance 2 100 109 11555 108 | 107.0
Performance 2 250 259 66305 258 | 257.0
Performance 2 500 509 | 257555 508 | 507.0
Performance 2 1000 1009 | 1015055 1008 | 1007.0
Performance 3 1 67 487 66 74
Performance 3 2 85 691 84 8.2
Performance 3 3 105 947 104 9.1
Performance 3 50 3301 | 182179 3300 55.2
Performance 3 100 11551 | 1214029 11550 | 105.1

Table 3.5: Number of checkpoints created and returned to and the ratio of checkpoints made
to checkpoints returned to for various testing runs of the programs presented in Chapter 4.
These numbers were recorded on JDK1.1.6 on Windows NT. The number of checkpoints
returned to is equal to the number of paths tested, minus one, plus the number of paths
aborted because of un-acquirable locks. The Performance program (presented in Section
4.1) takes two parameters, the first indicating how many threads to create and the second
how many locks each thread should acquire in its lifetime.
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Asynchronous input could be handled by having an always—enabled thread providing it.
This thread would be scheduled everywhere possible and would never be delayed.

The ability to replay a path is unimplemented. It could make use of information
used in deterministic replay discussed in Section 3.3.2, but it would have to store the logs
in files for use in a separate tester invocation. Since schedules are typically not executed
without interruption from the start to the end, but rather in pieces as the tester does its
depth-first search, replaying schedules would involve piecing together logged information.

Running the tester on sections of programs is also unimplemented. Perhaps down-
calls could be inserted in the program to indicate where the tester should start and stop.
Also, the tester needs to be integrated with the bidirectional debugger that is in progress.
The tester should be launchable from the debugger and may need to share information with
it.

Parallelization of the tester could lead to tremendous speed improvements. Dif-
ferent branches of the depth—first search tree could be run in parallel since they do not
communicate with each other. We have not investigated such parallelization.

Making the tester faster by optimizing its implementation will not yield as substan-
tial performance improvements as modifying the algorithm, especially adding assumptions

about which synchronized regions can be “trusted” (see Section 2.6).
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Chapter 4

Results

This chapter presents the results of running the tester on a number of example client
programs. Unfortunately Rivet does not yet support graphics. Since most multithreaded
Java programs are applets or graphical applications, this severely limits the supply of real
programs to test the tester on. Numerical analysis programs seem to be the most common
non—graphical programs available, and they are not multithreaded. The programs presented
here are toy programs, but they are scaled-down versions of what one would expect to
encounter in real applications. They all have different types of concurrency errors that our

tester correctly detects.

4.1 Performance

We will begin with a program that does not contain any errors but is constructed to measure
how many paths (schedules) the tester must execute for a specified number of threads and
locks per thread. The code for this Performance program is shown in Figure 4.1. The
program takes two parameters: the first indicates how many threads to create, and the
second how many locks to create. Each thread acquires each lock once and does nothing
else. Thus there are no inter-thread data dependencies.

Results of running the program with various numbers of threads and locks per thread
are listed in Table 4.1. Note that because there is an initial thread, having the program
create two threads results in three running threads. For the executions taking under one
minute, Rivet’s nearly ten—second initialization time adds significant overhead that makes

the paths per second number not very meaningful. The longer executions indicate that with
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/** Use this class to measure growth in number of paths */
public class Performance implements Runnable {

static class Lock {}

static Lock[] locks;

static int numThreads;

static int numLocks;

public static void main(String[] args) {
if (args.length !'= 2) {
System.err.println("Arguments: <# threads> <# locks per thread>");
return;
}
numThreads = Integer.valueOf (args[0]).intValue();
numLocks = Integer.valueOf (args[1]).intValue();

locks = new Lock[numLocks];
for (int i=0; i<numLocks; i++)
locks[i] = new Lock();

for (int i=0; i<numThreads; i++)
new Performance();

}

public Performance() {
new Thread(this).start();

}

public void run() {
for (int i=0; i<numLocks; i++)
synchronized (locks[il]) {

}

Figure 4.1: The Performance program creates a specified number of threads and a specified
number of locks per thread to measure how many paths the tester must search.
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few locks per thread, the tester can execute up to about 80 paths per second. As more locks
are added to each thread, this number decreases rapidly.

The large number of paths is due in part to the synchronized regions executed when
the initial thread creates the other threads. By using the tester’s javasafe option (see
Section 3.3) we can eliminate most of this and focus only on synchronized regions involving
the locks created by the Performance program itself. The right side of Table 4.1 gives
numbers for testing runs that use the javasafe option, and Table 4.2 shows further results
on numbers of threads difficult to test in a reasonable amount of time without the javasafe
option. The option reduces the time dramatically for small numbers of locks; however, as
the number of locks becomes large, the speedup disappears due the fact that the number of
locks being ignored by javasafe becomes very small relative to the total number of locks
acquired.

The number of paths executed for a test can differ from one platform to an-
other. This is due to differences in the core JDK classes. For example, on JDK1.1.5,
java.lang.StringBuffer’s append methods end up executing more synchronized regions
than on JDK1.1.6. This causes the Performance 2 1 test to execute 16 paths on JDK1.1.5
versus the 10 paths reported in the table for JDK1.1.6. With the javasafe option the
number of paths on the two platforms is identical, since the tester ignores the core JDK
class’ synchronized regions.

As the javasafe numbers indicate, in under an hour our tester can test a program
containing eleven threads (in addition to the initial thread) if those threads only acquire
one lock apiece. Real programs typically acquire more than one lock per thread, of course;
the practical limit of our tester is five or six threads.

We now turn out attention to programs exhibiting errors. We will look at seven
such programs. We summarize the performance results for these programs in Table 4.3. All
numbers mentioned in the text of the rest of this chapter are for JDK1.1.6 on Windows NT
on a Pentium 300MHz machine with 128MB RAM.

4.2 SplitSync

The SplitSync program was presented in Figure 1.1 on page 15; it is duplicated here as

Figure 4.2, with an assertion inserted that will notify the tester when the invariant is false.
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Program normal javasafe

Paths | Time | Paths/sec | Paths | Time | Paths/sec
Performance 2 1 10 | 00:00:12 4| 00:00:12
Performance 2 2 11 | 00:00:13 5 | 00:00:12
Performance 2 3 12 | 00:00:13 6 | 00:00:12
Performance 2 100 109 | 00:00:27 103 | 00:00:27
Performance 2 250 259 | 00:02:05 2.1 253 | 00:02:12 1.9
Performance 2 500 509 | 00:09:44 0.9 503 | 00:10:09 0.8
Performance 2 1000 1009 | 00:46:01 0.4 1003 | 00:47:26 0.4
Performance 3 1 67 | 00:00:17 13 | 00:00:13
Performance 3 2 85 | 00:00:17 21 | 00:00:12
Performance 3 3 105 | 00:00:15 31 | 00:00:13
Performance 3 50 3301 | 00:04:32 12.1 2757 | 00:03:38 12.6
Performance 3 100 11551 | 00:29:12 6.6 | 10507 | 00:27:53 6.3
Performance 4 1 546 | 00:00:19 40 | 00:00:13
Performance 4 2 784 | 00:00:22 85 | 00:00:14
Performance 4 3 1080 | 00:00:27 156 | 00:00:14
Performance 4 10 5280 | 00:02:00 44.0 1885 | 00:00:51
Performance 4 20 20800 | 00:12:09 28.5 | 11155 | 00:06:05 30.6
Performance 5 1 5447 | 00:01:16 1.7 121 | 00:00:14
Performance 5 2 8632 | 00:01:59 72.5 341 | 00:00:16
Performance 6 10 *778179 | 05:02:45 42.8 | 271453 | 01:45:06 43.0
Performance 7 5 *1025896 | 05:11:43 54.9 | 137257 | 00:37:04 61.7
Performance 8 3 *2356005 | 09:49:58 66.6 | 97656 | 00:21:18 76.4

Table 4.1: Number of paths (schedules) executed by the systematic tester on the Perfor-
mance program of Figure 4.1 for various numbers of threads (first parameter) and locks per
thread (second parameter). Each test was run both normally and with the javasafe tester
parameter (see Section 3.3). A * means that the tester ran out of memory after the specified
number of paths. The number of paths per second is only reported for tests lasting longer
than one minute, since Rivet’s 10 second initialization renders this statistic meaningless
for shorter runs. These numbers are for JDK1.1.6 on Windows NT on a Pentium 300MHz
machine with 128MB of RAM. The Rivet JIT was disabled.
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Program Tester Parameters | Paths | Time Paths/second
Performance 5 3 | javasafe 781 | 00:00:22
Performance 5 4 | javasafe 1555 | 00:00:33
Performance 5 5 | javasafe 2801 | 00:00:52
Performance 5 10 | javasafe 22621 | 00:07:44 48.8
Performance 6 1 | javasafe 364 | 00:00:16
Performance 6 2 | javasafe 1365 | 00:00:27
Performance 6 3 | javasafe 3906 | 00:01:00 65.1
Performance 6 5 | javasafe 19608 | 00:04:57 66.0
Performance 7 1 | javasafe 1093 | 00:00:53
Performance 7 2 | javasafe 5461 | 00:01:18 70.0
Performance 7 3 | javasafe 19531 | 00:04:20 75.1
Performance 8 1 | javasafe 3280 | 00:00:48
Performance 8 2 | javasafe 21845 | 00:04:27 81.8
Performance 8 4 | javasafe 335923 | 01:22:05 68.2
Performance 9 1 | javasafe 9841 | 00:01:58 83.4
Performance 9 2 | javasafe 87381 | 00:17:31 83.1
Performance 10 1 | javasafe 29524 | 00:05:37 87.6
Performance 10 2 | javasafe 349525 | 01:17:07 75.5
Performance 11 1 | javasafe 88573 | 00:16:44 88.2
Performance 12 1 | javasafe 265720 | 00:57:41 76.8

Table 4.2: Number of paths (schedules) executed by the systematic tester on the Perfor-
mance program of Figure 4.1 for various numbers of threads (first parameter) and locks per
thread (second parameter). The javasafe option is used to reduce the number of paths
by causing the tester to ignore synchronized regions of the core JDK classes. The number
of paths per second is only reported for tests lasting longer than one minute, since Rivet’s
10 second initialization renders this statistic meaningless for shorter runs. These numbers
are for JDK1.1.6 on Windows NT on a Pentium 300MHz machine with 128MB RAM. The
Rivet JIT was disabled.
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Program Tester Parameters Paths | Time Paths/second
SplitSync 18 | 00:00:12
NoEraser 16 | 00:00:12
NoEraser eraser 16 | 00:00:14
Deadlock 10 | 00:00:13
Deadlock deadlock 841 | 00:00:22
Deadlock3 79 | 00:00:13
Deadlock3 deadlock *207299 | 01:37:34 35.4
Deadlock3 deadlock, javasafe 2505 | 00:00:46 54.6
DeadlockWait 7 | 00:00:12
DeadlockWait | deadlock 19 | 00:00:12
BufferIf 22958 | 00:05:26 70.4
BufferIf javasafe 169 | 00:00:15
BufferIf deadlock, javasafe 1781 | 00:00:37
BufferNotify 29350 | 00:08:10 59.9
BufferNotify | javasafe 79 | 00:00:14
BufferNotify | deadlock, javasafe 574 | 00:00:20

Table 4.3: Number of paths (schedules) executed by the systematic tester on the seven
example programs containing errors described in this chapter. A * means that the tester
ran out of memory after the specified number of paths. The number of paths per second
is only reported for tests lasting longer than one minute, since Rivet’s 10 second initializa-
tion renders this statistic meaningless for shorter runs. These numbers are for JDK1.1.6
on Windows NT on a Pentium 300MHz machine with 128MB RAM. The Rivet JIT was
disabled.
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The assertion is in the form of a downcall and directly notifies the tester when it fails
(downcalls are described in detail in Section A.4). This gives the tester the ability to notify
the user of assertion failures and to stop testing when one occurs. Figure 4.3 shows a portion
of the output from running the tester on SplitSync. The assertion violation is detected on
the third path; a trace of that path is shown that lists the segments of each thread that
were executed. When the tester is told not to stop at the first assertion failure, a total of
18 paths are explored in around 12 seconds, most of which is spent initializing Rivet; the

same assertion failure occurs on six different paths.

4.3 NoEraser

The NoEraser program was presented in Figure 2.2; we repeat it here as Figure 4.4. For this
program, Eraser by itself did not report any errors when running on our Java interpreter or
on Rivet; running the tester and Eraser in parallel did catch the lock discipline violation,
as shown in Figure 4.5. There are 16 paths in the program, and it takes about 14 seconds

to test.

4.4 Deadlock

Figure 4.6 shows the code for a simple program that contains two threads with a poten-
tial lock—cycle deadlock. The tester correctly detects this deadlock, as Figure 4.7 shows.
Without the deadlock parameter, the tester still finds the deadlock on the third of ten
paths after about 11 seconds, most of which is spent initializing Rivet. When the deadlock

parameter is used the deadlock is found 9 times in the 841 paths executed.

4.5 Deadlock3

The program in Figure 4.8 contains three threads that can enter a lock—cycle deadlock. The
output is in Figure 4.9. Without the deadlock parameter, the tester finds the deadlock
on path number 20 after 12 seconds, most of which is spent initializing Rivet. With the
deadlock parameter, the deadlock is first found on path number 2790. Using both the

deadlock and javasafe parameters, the deadlock is found on path number 122.
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public class SplitSync implements Runnable {
static class Resource { public int x; }
static Resource resource = new Resource();

public static void main(String[] args) {
new SplitSync();
new SplitSync();

}

public SplitSync() {
new Thread(this).start();

}

/** increments resource.x */
public void run() {
int y;
synchronized (resource) { // A
y = resource.Xx;
}
synchronized (resource) { // B
// invariant: (resource.x == y)
Downcall.downcall("Tester", "assert",
new Object[]{new Boolean(x[0]==y),
"SplitSync.run: shared var was modified!"});
resource.x =y + 1;

}
}
}

Figure 4.2: Sample Java program SplitSync illustrating a timing-dependent bug. By split-
ting the increment of resource.x into two synchronized statements, an error will occur if
the two threads are interleaved between the synchronized statements. Both threads will
read the original value of resource.x, and both will then set it to one plus its original
value, resulting in the loss of one of the increments. This figure is identical to Figure 1.1
from Chapter 1, with the exception of the assertion inserted as a downcall.
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Assertion violation: SplitSync.run: shared var was modified!
Call stack for thread Thread-0:

1: tools.tester.testsuite.SplitSync.run()V PC=70

0: <threadstart>.<ThreadStartMethod>()V PC=0

History of threads:

initial<start, class java.lang.Thread(1750)>
Start= Call stack for thread initial:

0: <threadstart>.<StaticStartMethod>()V PC=0
End = Call stack for thread initial:

0: <threadstart>.<StaticStartMethod>()V PC=3

Thread-O<start, class tools.tester.testsuite.SplitSync$Resource(1726)>
Start= Call stack for thread Thread-0:

0: <threadstart>.<ThreadStartMethod>()V PC=0
End = Call stack for thread Thread-0:

1: tools.tester.testsuite.SplitSync.run()V PC=15

0: <threadstart>.<ThreadStartMethod>()V PC=0

Thread-1<start, class java.lang.ThreadGroup(0)>
Start= Call stack for thread Thread-1:

0: <threadstart>.<ThreadStartMethod>()V PC=0
End = Call stack for thread Thread-1:

0: <threadstart>.<ThreadStartMethod>()V PC=11

Thread-0<class tools.tester.testsuite.SplitSync$Resource(1726),
class tools.tester.testsuite.SplitSync$Resource(1726)>

Start= Call stack for thread Thread-0:

1: tools.tester.testsuite.SplitSync.run()V PC=15

0: <threadstart>.<ThreadStartMethod>()V PC=0
End = Call stack for thread Thread-O:

1: tools.tester.testsuite.SplitSync.run()V PC=73

0: <threadstart>.<ThreadStartMethod>()V PC=0

Figure 4.3: A portion of the output from running the tester on the SplitSync program of
Figure 1.1.
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public class NoEraser implements Runnable {
static class Resource { public int x; }
static Resource resource = new Resource();

// Two threads A and B
// iff B writes resource.x before A -> Eraser data race
public static void main(String[] args) {

new NoEraser("A");

new NoEraser("B");

}

private String name;

public NoEraser(String name) {
this.name = name;
new Thread(this).start();

}

public void run() {
int y;
synchronized(resource) {
y = resource.x;
}

if (y==0 && name.equals("B"))
resource.x++;

else synchronized(resource) {
resource.x++;

}

}
}

Figure 4.4: A program that will pass Eraser’s test nondeterministically. If the thread named
B increments resource.x before A, B does so without obtaining the lock for resource first.
This is a data race that Eraser will detect. However, if A increments resource.x before B
does, Eraser will not report any errors. (This figure is a duplicate of Figure 2.2 on page
29.)
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**x Data race detected on GETFIELD **3%*

No lock consistently held while accessing:
(objID=1655, field=tools.tester.testsuite.NoEraser$Resource.x,
thread=("Thread-0" @ PC=77), READWRITE)

Call stack for thread Thread-1:
1: tools.tester.testsuite.NoEraser.run()V PC=46
0: <threadstart>.<ThreadStartMethod>()V PC=0

***x Data race detected on PUTFIELD **x

No lock consistently held while accessing:
(objID=1655, field=tools.tester.testsuite.NoEraser$Resource.x,
thread=("Thread-0" @ PC=77), READWRITE)
Call stack for thread Thread-1:

1: tools.tester.testsuite.NoEraser.run()V PC=51

0: <threadstart>.<ThreadStartMethod>()V PC=0

*x* Tester has completed (16 paths total). *xx

***x Summary: Eraser found 12 data races. **x*

Figure 4.5: A portion of the output from running the tester on the NoEraser program of
Figure 2.2. Tt takes around 14 seconds to test the entire program.

4.6 DeadlockWait

The program in Figure 4.10 contains three threads that can enter a condition deadlock. The
output is in Figure 4.11. The tester without the deadlock parameter finds the deadlock on
the first path after about 11 seconds, most of which is spent initializing Rivet. With the
deadlock parameter the number of paths increases from 7 to 19, and the deadlock is found

quite a few times in those 19 paths.

4.7 Bufferlf

The BufferIf program contains a bounded buffer that has an error in its dequeue method.
Code for the buffer is in Figure 4.12. Any thread that attempts to enqueue when the buffer
is full performs a wait on the buffer object; this puts the thread to sleep until another
thread performs a notify or notifyAll on the same buffer object. Similarly, any thread
dequeueing when the buffer is empty waits until the buffer has something in it. The error
is that the buffer’s dequeue method uses an if to test the condition that the buffer is full

instead of a while loop. This means that if two threads are waiting for a full buffer to
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public class Deadlock implements Runnable {
static class Lock {}
static Lock a = new Lock();
static Lock b = new Lock(); // the locks

public static void main(String[] args) {
new Deadlock("First", true);
new Deadlock("Second", false);

}

boolean ab; // do we grab them in the order "ab"?

public Deadlock(String name, boolean ab) {
this.ab = ab;
new Thread(this, name).start();

}

public void run() {
if (ab) {
synchronized (a) {
synchronized (b) {
}
}
} else {

synchronized (b) {
synchronized (a) {

Figure 4.6: A program that contains a potential deadlock. The first thread obtains the two
locks in the order a,b, while the second thread obtains them in the order b,a. If the first
thread obtains a and then the second thread obtains b we have reached a deadlock, since
each thread holds the lock the other thread seeks.
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Deadlock detected —— a cycle between these threads:
Call stack for thread Thread-O0:
1: tools.tester.testsuite.Deadlock.run()V PC=21
0: <threadstart>.<ThreadStartMethod>()V PC=0
(except move this thread back 1 opcode, to before most recent monitorexit)

Call stack for thread Thread-1:
1: tools.tester.testsuite.Deadlock.run()V PC=60
0: <threadstart>.<ThreadStartMethod>()V PC=0

*x* Tester has completed (10 paths total). **x

Figure 4.7: Portion of output from running the tester on the Deadlock program of Figure
4.6. It takes around 13 seconds to test the program.

become non—full, they could both wake up and both enqueue, overflowing the buffer, since
they do not check upon waking up that the buffer is not full.

The program itself in Figure 4.13; it creates two producers and one consumer that
share a single bounded buffer. One of the producers has a lower priority than the other
producer and the consumer. A typical scheduler will thus never encounter the error since
it will let the consumer run before letting the lower priority producer run. Qur systematic
tester finds the error, however — sample output from running the tester on the program is
shown in Figure 4.14. The tester happens to find the error on the first path, which takes
it about 11 or 12 seconds, most of which is spent initializing Rivet. The same condition
deadlock is also detected on path numbers 3, 6, 11, 21, 31, and every 20 to 30 paths after
that. Note that the error we find is a condition deadlock, but by inserting an assertion that
the condition holds after the if check in the dequeue method we are guaranteed to find the
problem (otherwise we would have to run with the deadlock option). Figure 4.14 shows

that the assertion violation is detected at the same time as the deadlock.

4.8 BufferNotify

The BufferNotify program contains a bounded buffer very similar to that of the BufferIf
program (see Section 4.7). The error in the BufferNotify program is that the buffer’s
enqueue and dequeue methods use notify instead of notifyAll. Code for the buffer is in

Figure 4.15. The reason that notifyAll must be used is because there are actually two
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public class Deadlock3 implements Runnable {
static class Lock {}
static Lock a = new Lock();
static Lock b = new Lock();
static Lock ¢ = new Lock(); // the locks

public static void main(String[] args) {
new Deadlock3("First", 0);
new Deadlock3("Second", 1);
new Deadlock3("Third", 2);

}

int order; // code indicating lock grabbing order

public Deadlock3(String name, int order) {
this.order = order;
new Thread(this, name).start();

}

public void run() {
if (order == 0) {
synchronized (a) {
synchronized (b) {
}
}
} else if (order == 1) {
synchronized (b) {
synchronized (c) {
}
}
} else {

synchronized (c) {
synchronized (a) {

Figure 4.8: Another program containing a potential deadlock, this time between three
threads. They each obtain two of the three locks in a different order. The deadlock occurs
when the first thread grabs a, the second thread grabs b, and the third thread grabs c.
Then none of the threads can proceed since a different thread holds the lock it seeks.
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Deadlock detected —— a cycle between these threads:
Call stack for thread Thread-O0:
1: tools.tester.testsuite.Deadlock3.run()V PC=21
0: <threadstart>.<ThreadStartMethod>()V PC=0
(except move this thread back 1 opcode, to before most recent monitorexit)

Call stack for thread Thread-1:
1: tools.tester.testsuite.Deadlock3.run()V PC=71
0: <threadstart>.<ThreadStartMethod>()V PC=0
(except move this thread back 1 opcode, to before most recent monitorexit)

Call stack for thread Thread-2:
1: tools.tester.testsuite.Deadlock3.run()V PC=110
0: <threadstart>.<ThreadStartMethod>()V PC=0

*xx Tester has completed (79 paths total). **x

Figure 4.9: Portion of output from running the tester on the Deadlock3 program of Figure
4.8. It takes about 12 seconds to find this deadlock, 13 seconds to enumerate all paths of
the program.

different conditions associated with the buffer object: that the buffer is not empty and that
the buffer is not full. When a dequeue notifies, it means that the buffer is not full; when
an enqueue notifies, it means that the buffer is not empty. However, it is possible that the
thread that is woken up is waiting for the other condition. For example, suppose that one
of the producers and the consumer of Figure 4.16 are waiting. Now the other producer
performs an enqueue and the notify wakes up the first producer. This “consumes” the
notify, preventing the consumer from being notified. Since both producers end up waiting,
no one ever wakes up the consumer and we have a condition deadlock. The output from
the tester illustrating the condition deadlock is shown in Figure 4.17. The tester finds the
error on the first path after 11 seconds of execution, most of which is spent initializing
Rivet. The same condition deadlock is detected on the third path, but then not again until
path number 2346, followed by 2349, and then 3314 and 3317, with a similar pair every few
thousand paths for the remaining paths.

Using notifyAll would solve the problem because then all threads would be woken
up, and therefore the one that should be notified will actually get to run. notifyAll

is needed only when a condition variable is associated with more than one condition.
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public class DeadlockWait implements Runnable {
static class Lock {}
static Lock a = new Lock();
static Lock b = new Lock(); // the locks

public static void main(String[] args) {
new DeadlockWait ("First", true);
new DeadlockWait ("Second", false);

}

boolean ab; // do we grab them in the order "ab"?

public DeadlockWait(String name, boolean ab) {
this.ab = ab;
new Thread(this, name) .start();

}

public void run() {
if (ab) {
synchronized (a) {
synchronized (b) {

try {
b.wait();

} catch (InterruptedException i) {
System.out.println(name+" was interrupted!");

}
}
}
} else {
synchronized (a) {
}
synchronized (b) {
b.notify();

}
}
}
}

Figure 4.10: A program containing a condition deadlock. The first thread obtains both
locks a and b and then waits on b. The second thread then blocks trying to obtain lock a.
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warning, not all threads died -- 1 thread is waiting,
and 1 thread is blocked on a lock!

History of threads:
initial<start, class java.lang.Thread(1677)>

Start= Call stack for thread initial:
0: <threadstart>.<StaticStartMethod>()V PC=0
End = Call stack for thread initial:

0: <threadstart>.<StaticStartMethod>()V PC=3

Thread-1<start, class java.lang.ThreadGroup(0)>

Start= Call stack for thread Thread-1:
0: <threadstart>.<ThreadStartMethod>()V PC=0
End = Call stack for thread Thread-1:

0: <threadstart>.<ThreadStartMethod>()V PC=11

*x** Tester has completed (7 paths total). *x**

Figure 4.11: Portion of output from running the tester on the DeadlockWait program of
Figure 4.10. It takes about 12 seconds to test the program.

notifyAll is inefficient, since probably only one of the woken threads will be able to do
anything; the others will just wait again. Of course the inefficiency only happens when

many threads are waiting.

4.9 Summary

This chapter has shown that our tester is capable of finding many types of common errors
in multithreaded programs that are often difficult to test for. These include lock—cycle
deadlocks, condition deadlocks, using an if instead of a while to test a condition variable,
using notify instead of notifyAll to wake up threads waiting on a condition variable that
is used for more than one type of thread, mutual-exclusion locking discipline violations that
do not occur in all dynamic schedules, and errors that occur only in certain orderings of

modules that are individually correctly synchronized.
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/** Shared, bounded buffer */

public class Buffer {
static final int BUFSIZE = 2; // so capacity =1
private int first, last;
private Object[] els;

public Buffer() { first = 0; last = 0; els = new Object[BUFSIZE]; }

public synchronized void enq(Object x) throws InterruptedException {
if ((last+1) % BUFSIZE == first) // error -- should be while, not if
this.wait();
// invariant: (last+1) I BUFSIZE != first
els[last] = x;
last = (last+1) % BUFSIZE;
this.notifyAll();

}

public synchronized Object deq() throws InterruptedException {
while (first == last)
this.wait();
Object val = els[first];
first = (first+1) % BUFSIZE;
this.notifyAl1(Q);
return val;

Figure 4.12: Sample bounded buffer class containing a timing-dependent error. The enq
function should use a while instead of an if. With an if, if the enqueueing thread is woken
up but some other thread executes before it takes control and changes the condition, the
enqueueing thread will go ahead and execute even though the condition is false. Consider
the program in Figure 4.13 that uses this buffer. Assume both producers are waiting on
a full buffer and the consumer dequeues one item. This notifies both producers. If one
runs and enqueues an item, filling up the buffer, and then the other runs it will enqueue an
additional item, overflowing the buffer.
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/** Producer-consumer sharing a bounded buffer */
public class BufferIf {
static final int ITEMS_PRODUCED = 2;

public static void main(String[] args) {
Buffer b = new Buffer();
new Thread(new Producer(b, "P1")).start();
new Thread(new Consumer (b)) .start();
Thread p2 = new Thread(new Producer (b, "P2"));
p2.setPriority(Thread.MIN_PRIORITY) ;
p2.start();

}

static class Producer implements Runnable {

private Buffer buffer;
private String name;
public Producer (Buffer b, String n) { buffer = b; name = n; }
public void run() {

try {

for (int i=0; i<ITEMS_PRODUCED; i++)
buffer.enq(name) ;
} catch (InterruptedException i) { System.err.println(i); }

}
}

static class Consumer implements Runnable {
private Buffer buffer;
public Consumer (Buffer b) { buffer = b; }
public void run() {
try {
for (int i=0; i<ITEMS_PRODUCED*2; i++)
buffer.deq();
} catch (InterruptedException i) { System.err.println(i); }

}
}

Figure 4.13: Program that creates two producers and one consumer that share a bounded
buffer. One producer has lower priority than the other threads. This means that a typical
scheduler will never encounter the if versus while bug in Figure 4.12, since that bug
depends on both producers executing before the consumer.
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Assertion violation: Buffer.enq: buffer overflow!

Call stack for thread Thread-0:
2: tools.tester.testsuite.BufferIf$Buffer.enq(Ljava/lang/0Object;)V PC=62
1: tools.tester.testsuite.BufferIf$Producer.run()V PC=13
0: <threadstart>.<ThreadStartMethod>()V PC=0

warning, not all threads died -- 1 thread is waiting,
and O threads are blocked on locks!

History of threads:
initial<start, class java.lang.Thread(1683)>
Thread-0<start, class tools.tester.testsuite.BufferIf$Buffer(1655)>
Thread-1<start, class tools.tester.testsuite.BufferIf$Buffer(1655)>
Thread-2<start, class tools.tester.testsuite.BufferIf$Buffer(1655)>
Thread-0<class tools.tester.testsuite.BufferIf$Buffer(1655),

class java.lang.ThreadGroup(0)>
Thread-1<class tools.tester.testsuite.BufferIf$Buffer(1655),

class tools.tester.testsuite.BufferIf$Buffer(1655)>
Thread-2<class tools.tester.testsuite.BufferIf$Buffer(1655),

class java.lang.ThreadGroup(0)>
Thread-1<class tools.tester.testsuite.BufferIf$Buffer (1655),

class tools.tester.testsuite.BufferIf$Buffer(1655)>

Figure 4.14: Portion of output from running the tester on the Bufferlf program of Figures
4.12 and 4.13. Tt takes about 12 seconds for the tester to find this error. Since a full trace
of this path showing the method stack for the start and end point of each thread segment
would take far too much room, a tracing option was used that summarizes thread segments
by the classes of the locks whose synchronized regions are boundaries of the segments.
This is an ambiguous representation since the Buffer object is used as a lock by both
producers and the consumer, but this trace still gives a good idea of what happened. The
threads are numbered in the order they are created. Thus the trace shows that the order of
execution was Producerl, Consumer, Producer2, Producerl (dies), Consumer, Producer2
(dies), Consumer. The fact that two producers executed after one another is an indication
that the buffer may have overflowed; this resulted in the consumer missing an item, which
is why it ends up waiting at the end.
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/** Shared bounded buffer */

public class Buffer {
static final int CAPACITY = 1;
// Need extra slot to tell full from empty
static final int BUFSIZE = CAPACITY+1;
private int first, last;
private Object[] els;

public Buffer() { first = 0; last = 0; els = new Object[BUFSIZE]; }

public synchronized void enq(Object x) throws InterruptedException {
while ((last+1) % BUFSIZE == first)
this.wait();
els[last] = x;
last = (last+1) % BUFSIZE;
this.notify(); // error -- should be notifyAll()

}

public synchronized Object deq() throws InterruptedException {
while (first == last)
this.wait();
Object val = els[first];
first = (first+1) % BUFSIZE;
this.notify(); // error -- should be notifyAll()
return val;

Figure 4.15: Sample bounded buffer class containing a timing-dependent error. The enq
and deq functions should use notifyAll instead of notify.
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/** Producer-consumer sharing a bounded buffer */
public class BufferNotify {

static final boolean OQUTPUT = false;

static final int ITEMS_PRODUCED = 2;

public static void main(String[] args) {
Buffer b = new Buffer();
new Thread(new Producer(b, "P1")).start();
Thread p2 = new Thread(new Producer(b, "P2"));
p2.setPriority(Thread.MIN_PRIORITY) ;
p2.start();
new Thread(new Consumer(b)).start();

}

static class Producer implements Runnable {
private Buffer buffer;
private String name;
public Producer (Buffer b, String n) { buffer = b; name = n; }
public void run() {
try {
for (int i=0; i<ITEMS_PRODUCED; i++) {
buffer.enq(name) ;
}
} catch (InterruptedException i) { System.err.println(i); }
}
}

static class Consumer implements Runnable {
private Buffer buffer;
public Consumer (Buffer b) { buffer = b; }
public void run() {
try {
for (int i=0; i<ITEMS_PRODUCED*2; i++) { // while (true)
buffer.deqQ;
}

} catch (InterruptedException i) { System.err.println(i); }

}
}

Figure 4.16: Program that creates two producers and one consumer that share a bounded
buffer. One of the producers has lower priority than the other threads. This means that
a typical scheduler will never encounter the notify versus notifyAll bug in the buffer
of Figure 4.15, since that bug depends on a producer being notified in preference to a
consumer.
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warning, not all threads died -- 2 threads are waiting,
and 0 threads are blocked on locks!

History of threads:
initial<start, class java.lang.Thread(1685)>
Thread-O<start, class tools.tester.testsuite.BufferNotify$Buffer(1655)>
Thread-1<start, class tools.tester.testsuite.BufferNotify$Buffer(1655)>
Thread-2<start, class tools.tester.testsuite.BufferNotify$Buffer(1655)>
Thread-0<class tools.tester.testsuite.BufferNotify$Buffer(1655),

class java.lang.ThreadGroup(0)>
Thread-1<class tools.tester.testsuite.BufferNotify$Buffer(1655),

class tools.tester.testsuite.BufferNotify$Buffer(1655)>

Figure 4.17: Portion of output from running the tester on the BufferNotify program of
Figures 4.15 and 4.16. The tester detects the deadlock after 11 seconds of execution. Since
a full trace of this path showing the method stack for the start and end point of each
thread segment would take far too much room, a tracing option was used that summarizes
thread segments by the classes of the locks whose synchronized regions are boundaries of the
segments. This is an ambiguous representation since the Buffer object is used as a lock by
both producers and the consumer, but this trace still gives a good idea of what happened.
The threads are numbered in the order they are created. Thus the trace shows that the
order of execution was Producerl, Producer2, Consumer, Producerl (dies), Producer2.
Producerl’s last execution’s notify woke up Producer2 instead of the consumer, and we
end up with both Producer2 and the Consumer waiting.
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Chapter 5

Conclusions

Conventional testing methods are inadequate for multithreaded Java programs. Due to the
inherent nondeterminism of multithreaded programs, testing a program by merely running
it on different inputs cannot guarantee to cover all program behaviors. For this a behavior—
complete tester is needed. Such testers exist for multi—process programs, but their methods
do not apply well to the shared address space of multithreaded Java programs.

We have shown that it is possible to build a systematic, behavior-complete tester
for multithreaded Java programs by making assumptions about the nature of the programs.
The fundamental assumption is that the program to be tested follows a mutual-exclusion
locking discipline. Given this assumption we need only enumerate all schedules of synchro-
nized regions instead of all schedules of instructions to cover all behaviors of the program.
This assumption is not overly restrictive: as Savage et al. [S+97] argue, even experienced
programmers tend to follow such a discipline. They do this even when more advanced
sychronization techniques are readily available.

We presented the ExitBlock algorithm that guarantees to test all program behav-
iors while only considering the possible schedules of synchronized regions. Our ideas are
applicable to other multithreaded languages. The only Java—specific properties used by the
ExitBlock algorithm are that threads own locks and that locks are properly nested. We
proved the algorithm correct and we have shown that our implementation correctly finds
the various errors in seven example programs in a short amount of time. These errors in-
clude common multithreading errors that are often difficult to test for, such as errors that
occur only in certain orderings of modules that are individually correctly synchronized, or

using an if instead of a while to test a condition variable.
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While our tester cannot currently test larger programs due to its slow speed, it is
built on a prototype virtual machine and is intended as a proof of concept. Implementing
a similar tester in a high—-performance virtual machine will enable testing a much larger,
more practical set of target programs.

The hardest challenges in implementing the ExitBlock algorithm are checkpointing
and deterministic replay. We benefited from placing these inside of the virtual machine.
Because they must intercept low—level operations (every field access and input or output
action) they need to be in direct contact with those operations for efficiency.

We are satisfied with the power that Rivet’s Tool Interface gives tool writers. It
enabled rapid development of Eraser and the tester; implementing the tester independently

would have taken significantly longer.
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Appendix A

Rivet Implementation

The Rivet Virtual Machine is a Java virtual machine designed as a platform for tools. Rivet
supports tools by exporting client program data and execution events, along with an extra
field mechanism, deterministic replay, and checkpointing facilities that allow a tool to undo
client program operations.

Our systematic tester makes heavy use of Rivet’s checkpointing, extra fields, and
event system. The tester’s deterministic replay is not yet implemented but it will build on
Rivet’s. This appendix describes the implementation of Rivet, focusing on those features

used by the tester.

A.1 Architecture Overview

Rivet is a Java virtual machine written in Java. It is implemented in Java for modularity
and extensibility, at some expense to performance (performance numbers for Rivet can be
found in Section 3.1.1). Since it runs on top of another Java virtual machine, Rivet can
avoid platform—specific code by utilizing features of the “lower” virtual machine.

Writing a Java virtual machine in Java has some inherent difficulties. The implemen-
tors of the JavaInJava virtual machine [Tai98], also written in Java, discovered a number
of such challenges. We experienced some similar problems to theirs, but took different
approaches on many issues.

A Java virtual machine is typically composed of several subsystems, including a class
loader, bytecode interpreter, memory manager, and thread scheduler. A detailed descrip-

tion of what a Java virtual machine is can be found in [MD97] or in the official Java virtual
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Figure A.1: The major subsystems of Rivet. Rivet makes use of the lower virtual machine’s
memory manager, garbage collector, and native libraries.

machine specification [LY99]. Figure A.1 illustrates the major subsystems of Rivet. The
design of Rivet cleanly separates these subsystems and uses the class and protection mech-
anisms of Java to enforce modularity and communication through established interfaces.
This is in contrast to most virtual machines whose main priority is performance and which
tend to sacrifice a clean, modular design in the name of efficiency. JavalnJava joins Rivet
in the category of virtual machines that consider clean design to be as important as perfor-
mance. Rivet does relax its interfaces in the performance—critical bytecode interpretation
loop, allowing direct access to member variables between critical classes.

Rivet and JavalnJava also share a common approach to memory management. Be-
cause pointers are not available in Java, virtual machine memory management would be
very different if written in Java than if written in C or C+4. Rivet leaves all memory
management issues to the underlying virtual machine, relying on its garbage collector and
memory allocation schemes. Since Rivet has no direct control over the garbage collector
it must be careful not to generate too many internal structures that can reference client
program objects that should be garbage collected; doing so would prevent garbage collec-
tion. Weak references would be a big help here. At the moment Rivet simply avoids such

structures.
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A.2 Class and Object Representation

Java classes are loaded dynamically as needed by a Java virtual machine. The machine needs
some internal representation of a class. Rivet uses the DE.fub.inf.JVM. JavaClass package
[Dah99] to parse and manipulate class files. Rivet uses the JavaClass representation of the
constant pool as is; however, Rivet has its own structures that represent classes, methods,
fields, and exception tables. The design of Rivet calls for each JavaClass class to be used
only by the corresponding Rivet class, keeping dependence on the JavaClass package to a
minimum so that it can be replaced in the future if need be.

Figure A.2 illustrates class representation in Rivet. A module called RClassLoader
creates an RClass instance for each class. RClass contains method and field information. We
will not discuss how methods are stored here as it is not relevant to Rivet’s relationship with
the tester. Fields are stored in different ways depending on what client object representation
is being used. Rivet currently does not do any verification of classes that it loads.

Client objects are instances of client classes. Rivet supports multiple representations
of client objects. It hides object representation specifics behind a series of “Rep” interfaces.
General operations on objects, such as obtaining the RClass of an object or cloning an
object, are provided by the Replnterface interface. The RepArrayAccess interface allows
for array manipulation, much like the java.lang.reflect.Array class. The RepClass
interface knows how to create a new instance of its class and holds the field accessors for its
class in the form of RepFields. These RepFields are what the rest of the virtual machine
uses to read and write fields of client objects. As we shall see, this abstraction is of great
value in implementing checkpointing and extra fields.

After the RClassLoader creates an RClass, the RClass requests that the RepClass-
Loader create a corresponding RepClass. RepClassLoader is needed because some object
representations perform extra operations during class loading.

Two object representations will be discussed here, the Generic representation and
the Native representation. Only the Native one is used substantially because the other

representations do not work with native methods.
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Figure A.2: Client class representation in Rivet. Dotted lines indicate creation: when a class
is loaded, the RClassLoader creates an RClass. The RClass then tells the RepClassLoader
to create a RepClass; this RepClass is stored with the RClass, as indicated by the solid
arrow. Solid arrows also show that information about the class’ methods (whose exact
representation will not be discussed here) are stored in the RClass, and that the RepClass
contains information specific to the object representation being used, such as field accessors
(RepFields).

A.2.1 Generic Representation

The Generic representation is a simple, straightforward representation: it represents a client
object as an instance of Rivet’s GObject class. Each GObject contains the fields for its
corresponding client object and a reference to the RClass for its client object’s class. Because
Java has no polymorphism, the fields of the client object are stored in three separate arrays.
Primitives of integral types (byte, char, short, int, and long) are stored in an array of
ints. Longs are split into their high and low words, taking up two slots. Primitives of
type float are widened to doubles and stored along with doubles in an array of doubles.
Fields of reference type (arrays and objects) are stored in an array of GObject. Figure A.3
summarizes the fields of GObject. This differs from JavalnJava’s solution, which wraps
primitives in their corresponding object wrappers (int to Integer, etc.) and then deals with
them all as Objects. Rivet took its approach for efficiency.

The Generic representation works fine except for dealing with native methods. We
would like to avoid duplicating the substantial native libraries (for example, the core of
java.io and java.awt are implemented natively) of the underlying virtual machine for

Rivet. If Rivet can reuse the underlying virtual machine’s native methods, then Rivet
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Figure A.3: Fields of GObject, the class that represents a client object in the Generic
representation. Three arrays must be used to hold the fields of the client object to get
around Java’s lack of efficient polymorphism.

will be much more platform—independent. However, in the Generic representation, a client
object at runtime is represented by an instance of class GObject, no matter what client
class the object is an instance of, which prevents using the existing native methods.
Consider class java.io.FileDescriptor. The native code that manipulates
FileDescriptors expects to be handed an instance of FileDescriptor that is represented in
the way the lower virtual machine represents objects. If Rivet tries to invoke some native
method on a GObject, the method will fail since it will not find the fields of FileDescrip-
tor in the proper place. This is illustrated in Figure A.4. In order to reuse lower native
methods Rivet must use the same object representation as the lower virtual machine. This

realization led to the creation of the Native object representation.

A.2.2 Native Representation

As described in the previous section, the native libraries of the lower virtual machine expect
client objects to be in the form that the lower virtual machine represents them in. The
namespace of Java classes is delineated not just by class name but by class name and class
loader. Due to a loophole in the current Java specifications, it turns out that it is possible
to load a class B with the same name as class A through a different classloader than class
A and have B share A’s native methods. This is because native method linking does not
involve looking at a class’ classloader, although the rest of the system differentiates classes
with the same name coming from different classloaders. Rivet exploits the hole in its Native
representation.

The Native representation’s implementation of RepClassLoader is called NClass-

Loader. For every client class C loaded by Rivet, the NClassLoader loads a shadow class
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Figure A.4: Problem with invoking lower native methods using the Generic object repre-
sentation. The Client Level is the level of the client program, the Rivet Level is that of
the representations used by Rivet, and the Native Level is the level of the lower virtual
machine. The problem is that native code expects client objects to be in the same format
as that used by the lower virtual machine.

C’ that shares C’s native methods. An instance of this shadow class is created as the repre-
sentation of a client instance of class C. This shadow class instance has fields in the proper
places for the native methods of the client class. Figure A.5 illustrates the new situation.
Lower virtual machine native methods may now be directly invoked on client objects, which
are instances of shadow classes. Note that the shadow class can have more fields and meth-
ods than the client class, and that its fields and methods can be slightly different, so long
as native code will not notice. For example, its fields can have different access modifiers

since native code does not check those.

Implementation of Native Representation

There are several challenges in implementing this scheme, including how to give Rivet access
to client object fields. The Java Reflection API must be used, but it does not allow access
to non—public fields. Also, Rivet needs a way to obtain the RClass for a client object.

Another issue is how to handle upcalls (invocations of Java methods by native methods) in
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Figure A.5: The Native representation makes it possible to directly invoke lower native
methods on Rivet’s representation of client objects. It uses shadow classes that have
the same name but were loaded by a different class loader than the corresponding client
class. In the figure, the Rivet-level FileDescriptor is an instance of the shadow class for
java.io.FileDescriptor. This means that native code will access the correct f£d field
when presented with a Rivet—level instance.

this scheme. All of these problems can be solved by dynamically transforming the shadow
class.

The NClassLoader can modify the shadow class while keeping the properties of it
that native method invocation needs, namely, that it has the same name as the client class
and that the representation of instances of it in the lower virtual machine look sufficiently
like instances of the client class to lower native methods. For native methods that use the
Java Native Interface (JNI), this means that the shadow class simply has to duplicate the
fields and methods of the client class in name and type. Some core JDK native methods
use direct field offsets instead of the JNI; for these we need shadow classes to have the same
memory layout as client classes. This is discussed further in Section A.5.

To solve the problem of the Reflection API not allowing access to non—public fields,
we make every field of the shadow class public. As for obtaining the RClass given a client
object, we initially added a static field to every class. However, given a client object the
new field must be looked up every time with a call to java.lang.Class.getField, which

is inefficient. Instead the Native representation keeps a hashtable mapping client classes to
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RepClasses, and from the RepClass the RClass can be obtained.

Upcalls are invocations of Java methods by native methods. An example is the
creation of a Java object by native code that leads to execution of the object’s constructor.
Since Rivet should interpret all Java methods, we need to make sure that if a native method
makes an upcall Rivet knows about it. We can do this by replacing each of a shadow class’
non-—native methods with a trampoline. This trampoline calls a special Rivet static method
(the upcall handler) and passes it the name of the Java method that the native method
is trying to invoke. The upcall handler then invokes the Rivet interpreter on that Java
method. Note that this trampoline transformation means that the parent of a shadow class
needs to be the shadow class corresponding to its client class’ parent, not its client class’
parent itself. This is because inherited methods need to be trampolines as well. Thus we
must have a complete shadow hierarchy.

There is another transformation that must be made. In Java there is a separation
between memory allocation for a new object and initialization of that memory. The new
opcode allocates memory, while constructors initialize it. With the Native representation, in
order to allocate memory we must call a constructor of the shadow class in question. We do
not want this constructor to do any initialization in order to keep allocation separate. Thus
we must add a dummy constructor to every shadow class that does no initialization. This
also constrains us to have shadow classes inherit from shadow classes, since these dummy
constructors must call corresponding dummy constructors in their superclasses.

All of these transformations are performed in Rivet using the ClassGen package
of JavaClass, which allows dynamic manipulation of Java class files. The NClassLoader
is a custom classloader that transforms each client class into a shadow class that is then
registered with the lower virtual machine.

There is one more problem: the verifier of the lower virtual machine will not allow
a shadow class of java.lang.Object or of java.lang.Throwable. Thus we must share
these classes with the lower virtual machine. They become special cases. Every chain of
dummy constructor calls always ends with a call to Object’s constructor, which does no
initialization anyway and so functions as a dummy constructor, or Throwable’s no—argument
constructor, which does a little initialization. Throwable’s minor initialization is something
that we can live with. However, Throwable contains some private fields. Thus Rivet requires

that a version of Throwable with only public fields be placed before classes.zip on the

116



classpath.

Array classes must also be shared with the lower virtual machine. Since array classes
are a special case in Java anyway (they are only created by the virtual machine, and do
not go through class loaders), and since they do not have private fields or native methods,
they are not much of a problem here. However, they will be more of a problem when we
consider extra fields and checkpointing later on.

As for interfacing to the rest of Rivet, the RepFields hide the Reflection API calls,
and client objects can still be thought of as instances of Object — whether they are in fact

instances of shadow classes or instances of GObject.

Consequences of Native Representation

The Native representation gives Rivet the ability to reuse the lower virtual machine’s native
methods. However, it has a number of limitations. Performance is one: reflection is many
times slower than the array access needed for the Generic representation (Rivet’s JIT solves
this problem, though, by replacing this reflection with direct field access). Another is that
some native methods construct client objects without calling their Java—code constructors.
Thus Rivet is not notified that these objects have been created. Typically they are the
return value of the native method, and typically it is a String that is created, so Rivet has
a special—case check to handle this properly. Additionally, in order to be able to convert
from a lower virtual machine object to a Rivet client object, the class of the lower object
must have all public fields. This can be accomplished by using a classes.zip in which all
fields are public.

Another limitation is the fragility of Rivet during a native upcall. Thread switches
during an upcall are disastrous (see Section A.3), and checkpoints cannot be taken (see
Section A.6.4). Upcalls do tend to be rare, fortunately.

Even more limitations show up when we add extra fields and checkpointing; they
are described in those features’ respective sections (A.5 and A.6.4). Fortunately, client
application native methods are typically well-behaved. It is usually only the core JDK
native methods that behave in ways that Rivet cannot handle well, and these can be dealt
with on a case-by—case basis.

The JavalnJava virtual machine uses a client object representation similar to Rivet’s

Generic representation. Like Generic, JavalnJava cannot reuse native methods. JavalnJava
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found no acceptable solution to the problem of native methods in a virtual machine written

entirely in Java.

A.3 Interpretation

The heart of Rivet is the bytecode interpreter. This consists of a series of loops
called run, runThreadForAWhile, and runMethodForAWhile. The run loop calls
runThreadForAWhile, which returns when a thread switch is desired, at which point
run performs the thread switch and then calls runThreadForAWhile again. The
runThreadForAWhile loop calls runMethodForAWhile on the current method of the cur-
rent thread, which returns when that method completes or when a new method invocation
is being made. runThreadForAWhile then calls runMethodForAWhile on the new current
method. runMethodForAWhile is a loop containing a large switch statement that interprets
the bytecodes of the current method.

The representation of threads is influenced by both the extra fields feature of Rivet
and the checkpointing requirements. Each client thread has a corresponding internal class
that stores the thread’s activation stack, its PC (program counter), and its scheduling
information. An extra field is added to the client-level java.lang.Thread (see Section A.5
for information on how this is done) to refer to the internal class for that thread. Instead
of using a direct reference, an index into the scheduler’s array of all threads is stored in the
extra field. This level of indirection eases checkpointing of the thread scheduler. This will
be discussed further in Section A.6.2.

Each thread’s activation stack is a stack of frames, one frame per method invocation.
The thread’s PC indicates which bytecode is the next to be executed in the method invo-
cation on top of the stack. Each frame contains a PC to be returned to when the method it
invoked returns, an operand stack, and a list of local variables. The same method as in the
Generic representation is used here to get around the lack of polymorphism in Java: both
the operand stack and the local variables are kept in three separate arrays.

Rivet consists of a single thread. Having only one thread running on the lower
virtual machine makes Rivet’s task of deterministic replay much simpler, and makes the
implementation of the thread scheduler much simpler. All client threads are multiplexed

on Rivet’s single thread. A global counter of bytecodes executed is used to decide when

118



to preempt a thread. Note that Rivet’s implementation of multithreading is inherently
platform—independent.

The problem with having a single Rivet thread is that Rivet cannot handle thread
switches in native upcalls. An upcall involves stacking interpreters on top of each other
on the lower virtual machine’s method stack. Imagine a thread switch during an upcall
in which the thread switched to itself invokes a native method that makes an upcall. If
Rivet switches back to the first thread, it must destroy the second thread’s native method
frame on the lower virtual machine’s stack in order to return to the first thread’s native
method. This problem could be solved by having a separate lower virtual machine thread
execute each native call (which would be inefficient), or having a separate lower virtual
machine thread for each client thread. This has not been addressed yet mainly because
native upcalls are rare and because Rivet cannot handle checkpoints during them anyway
(see Section A.6.4). Currently, Rivet makes no promises about working properly with native
upcalls that perform complex operations.

For input and output, a special thread is launched for every potentially blocking
operation. If this thread blocks, the scheduler blocks the current client thread and switches
to a new thread. Every so often the scheduler walks through all threads that are blocked
on input or output to check if they are now ready to run. Note that since we intercept
only those native methods in the core JDK that can block, client native methods must be
non-blocking in order for the scheduler to operate properly. This requirement could be
removed in the same manner proposed earlier to eliminate problems with thread switches
in upcalls, by having a separate thread execute each native method call. Again, this would
be inefficient.

Synchronization is managed by adding an extra field to the -client-level
java.lang.0Object that holds the index into a master list of lock data structures. Each
lock holds a reference to the thread that owns it, a count of how many times it has been
acquired by that thread, and two queues: one of threads blocked waiting for that lock and
one of threads waiting to be notified on that lock. As with threads, the index indirection
helps with checkpointing of the lock structures.

A Just In Time dynamic compiler (JIT) for Rivet is under development. It translates
client program bytecodes to bytecodes that execute directly on the lower virtual machine.

Since the lower machine’s own JIT already provides extensive optimizations, Rivet’s JIT
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can avoid performing expensive analysis and immediately pass the bytecodes to the lower

machine.

A.4 Tool Interface

The purpose of Rivet is to implement common features that Java programming tools require
and make them available for rapid tool development. The Rivet Tool Interface, or RTI, is
a set of interfaces used by tools to access Rivet’s powerful features.

One group of RTT interfaces mirrors the Java Reflection API, providing client object
reflection capabilities to tools. The RTIClass, RTIMethod, RTIConstructor, RTIField, and
RTIArray interfaces resemble their Java Reflection counterparts. The RTIObject interface
contains one method allowing a tool to obtain the RTIClass of a client object. Once the tool
has this it can use the other reflection interfaces to get and set fields and invoke methods.

The RTIClassLoader interface contains methods for looking up classes by name and
loading new classes. In addition, it allows a tool to add extra fields to a class (this must
be done before any classes are loaded). This powerful feature enables tools to directly store
data in client objects. Section A.5 describes the extra field mechanism in detail.

The RTIFrame and RTIThread interfaces allow a tool to view the current threads
and their activation stacks, and the operand stacks and local variables of each activation
frame. Threads may be disabled using RTIThread; a thread so disabled will not run or be
notified (unless there are no alternative threads to notify) until a tool re-enables it.

The namesake interface, RTI, is the main interface. It contains access methods for
the RTIClassLoader corresponding to the system loader and the singleton RTTArray and
RTIObject classes (since they are interfaces they cannot have static methods, so there must
be one instance of each of them). It has methods to get the live threads, get the threads
blocked on a lock, and get the owner of a lock. In addition it has methods to set and
delete breakpoints and watchpoints, methods for taking and returning to checkpoints, and
methods for registering for events. Checkpoints and events are the two most important
features of the RTI. We will discuss events now and checkpoints in Section A.6.

Events allow a tool to be notified when certain operations occur. A tool registers
an event handler for each event it wishes to receive. There are separate events for every

opcode, which are generated whenever a bytecode of that type is executed. There are
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events generated whenever a class is loaded, whenever an object is created, an whenever an
exception is thrown. There are events indicating method invocation and method completion,
lock acquisition and release; events generated by field loading and storing for instance fields,
static fields, and arrays; events for threads starting and dying, thread switches, and wait
and notify operations. In addition there are events for breakpoints and reaching a target
stack depth.

Another feature of the RTT is that it allows a tool to set up a “downcall”, which is
a mechanism for a client program to make a direct method call into the tool. Tools register
each downcall through the RTT with an owner name and a method name, for example
“Tester” and “assert”. This is to avoid direct dependence on class names, allowing for
tool-independent downcalls to be used (enabling different implementations of tools to be
used without changing every client’s downcalls). Rivet’s Downcall class contains a static
method that the client can call, passing it the owner name and method name of the desired
downcall and an array of arguments. For example, a programmer could insert the following
code into a program before running it on Rivet:

Downcall.downcall("Tester",
"assert",
new Object[]{new Boolean(true)});

Rivet, when interpreting this method call, would invoke the java.lang.reflect.Method
that was registered for the string pair (“Tester”, “assert”) and pass it as arguments the
client—level array of client—level objects. The assert method would convert from client-level
Boolean to lower boolean, and then act from there. It can return an Object that will
be passed back to the client as the return value of downcall (so it must be a client-level

object).

A.4.1 Flow of Control

The RTI gives tools the ability to invoke client methods. However, this can lead to nested
interpretation, that is, having multiple copies of Rivet’s interpretation loop on the lower
virtual machine’s stack simultaneously. This would be bad because Rivet’s interpretation
loop uses local variables as caches for the state of the virtual machine, which could be
changed by a nested interpretation, causing the local variables in the outer interpretation to
have stale values. Nested interpretation could also occur when native methods make upcalls

and when the client program uses the Reflection API to invoke methods. To eliminate
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the nested interpretation in all of these cases, Rivet was designed to have a master loop
that is external to the bytecode interpretation loop. The interpretation loop can return
to the master loop (called “unwinding”) in order for a new interpretation loop to begin;
this suspends the client program being executed. When the new loop finishes, the old
interpretation loop can be restarted at the same point it left off with no change in the state
or results of the client program (unless the new loop altered the program’s state). Since
the loop is being reentered, the local variable caches will be refilled with the proper values.

This master loop fits in nicely with another design decision. When the Rivet Tool
Interface was first created the tools were in control: the user would start up a tool which
would then start Rivet. However, such a system does not allow for multiple tools to be used
simultaneously. For example, our systematic tester and Eraser are both useful tools in their
own right, and a user may wish to run them in parallel to ensure that a client program
meets the tester’s criteria. Consequently, we created a “master driver” that coordinates
between the virtual machine and the tools. A user runs the master driver, indicating which
tools to use and what client program to run. The driver initializes the virtual machine and
then initializes the tools, giving them a chance to declare what events they are interested
in. For this purpose every tool has an init() method with a standard signature. The
driver then starts its master loop, which starts the bytecode interpretation loop that runs
the client program. Whenever an event occurs that a tool has registered for, that tool’s
event handler is called, and when it returns the interpretation loop resumes execution of
the client program. Figure A.6 illustrates the system.

When a tool wishes to invoke a client method (or perform certain other state—
sensitive operations such as returning to a checkpoint) it must first request that Rivet
unwind. Since Rivet must be in a consistent state to unwind, a request merely sets a flag
that the interpretation loop checks on each iteration and after certain events. The tool
passes a token object to Rivet with the unwind request. When the interpretation loop sees
the flag, it stores its current state, exits, and returns to the master loop, carrying the token
object with it. The master driver then raises an “unwound” event with the token object as
an argument. This way a tool can recognize the unwind that it requested by comparing its

token object to the event argument. Figure A.7 illustrates the steps of unwinding Rivet.
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Figure A.6: Initialization of Rivet. First, the master driver creates a tool interface. Then
it initializes the virtual machine. Third, the master driver initializes each tool. Finally,
the master driver starts its master loop, which starts the virtual machine’s interpretation
loop. The interpretation loop does not return back to the master loop until an unwind is
requested (see Figure A.7). The interpretation loop generates events that are sent to any
tools registered for them.

A.4.2 Performance

Naturally, the power of events and checkpoints does not come for free. Table A.1 shows
the results of running six benchmarks on a tool called Events. This tool registers for every
event that the RTI makes available. It also adds several extra instance fields to a number
of client classes, including java.lang.0bject, in order to have extra fields in every client
object. In addition, it was run with checkpoints enabled (as will be explained in Section
A.6.2, Rivet has two modes, one in which checkpoints are disabled for efficiency and one
in which they are enabled, meaning that checks are performed on field reads and writes to
ensure that the proper versions of client objects are being used). The tool does not actually
do anything at run time; its purpose is to measure the cost of having Rivet raise events,
add extra fields, and use checkpoint—enabled fields. The performance of checkpointing by
itself is discussed in Section A.6.3.

As the table shows, Rivet’s features carry a penalty of ten to fifteen percent of

execution time for most of the tests. The JavaCUP test’s ratio is anomalous; we could
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Figure A.7: How an unwind works. First, the tool requests that Rivet unwind. The tool
interface forwards this to the virtual machine, whose interpretation loop returns back to the
master loop. The master driver generates an “unwound” event, which the tool will receive
if it registered for it. Finally, when the tool’s “unwound” event handler returns, the master

(1) request unwind

loop starts up the interpretation loop again.
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Benchmark No tool Events tool

java Rivet | slowdown Rivet | slowdown | ratio
SPEC _201_compress | 75.415 | 17711.271 234.9 | 20212.622 268.0 | 1.14
SPEC _202_jess 2.382 250.587 105.2 283.473 119.0 | 1.13
SPEC _205_raytrace 9.033 | 1692.260 187.3 | 1924.986 213.1 | 1.13
SPEC _209_db 0.207 30.179 145.8 33.295 160.8 | 1.10
SPEC 227 mtrt 8.779 | 1683.085 191.7 | 1930.597 219.9 | 1.14
JavaCUP 14.180 | 1824.480 128.7 | 6349.000 447.7 | 3.48
geometric mean 159.8 218.1 | 1.36

Table A.1: Time taken in seconds to run six different benchmarks on JDK1.1.5 on Linux
on a Pentium II 200 MHz machine with 64MB RAM. The SPEC benchmarks are from the

JVM Client98 Release 1.01 benchmark suite [SPEC]. They were each run with the -s1 flag.

These are not official SPEC results. The JavaCUP benchmark involved running JavaCUP
[CUP] on the syntax of the Java language. The slowdown columns indicate the slowdown
of Rivet versus java; the ratio column indicates the slowdown of using all events versus not

using any events. The Rivet JIT was not enabled.
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find no explanation for it. The geometric mean is a penalty of one-third of execution time;

however, most tools will not register for nearly as many events as the Events tool.

A.5 Extra Fields

Rivet has a powerful extra field mechanism that allows tools to add any number of extra
fields of any type to any client class. This enables tools to store their own data in client
objects. Extra fields may not be accessed by client code because the client program is not
aware of their existence. Extra fields that are public or protected and not static are inherited
just like normal fields. In addition, extra fields may be added to arrays (and arrays inherit
extra fields added to java.lang.0Object). They may not be added to interfaces, however.

The virtual machine itself uses extra fields internally: an extra field is added to
Object to hold synchronization information, to Thread to hold a pointer to the internal
thread object used by the scheduler, to Class to hold a pointer to the corresponding RClass
for reflection purposes, and another to Object to hold an object’s hashcode. Also, check-
pointing fields are added to every object as described in Section A.6. A tool must request
that extra fields be added to a class in the tool’s init () method, before Rivet loads any
classes.

In the Generic object representation, extra fields are easy to add: the arrays that
hold field values are simply lengthened. Note that GObject’s array of non—primitive fields
must now be of type Object instead of GObject to allow for extra fields of any type (a tool
may want to store its own non—client object in an extra field).

In the Native object representation, extra fields can be added to classes that we
transform in our class loader with few problems. However, since we share Object, Throw-
able, and all array classes with the lower virtual machine we cannot directly add fields to
them. Instead we keep a hashtable for each extra field that holds the values of that field
for objects that cannot have fields directly added to them. A special class that implements
RepField is wrapped around the hashtable to make these fields look no different from other
fields to the rest of the virtual machine.

Since subclasses of Object and Throwable are expected to inherit any extra meth-
ods of those classes, we insert the special classes SubObject and SubThrowable into the

inheritance hierarchy as shown in Figure A.8. We add Object’s extra fields to SubObject
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Figure A.8: Class hierarchy used for adding extra fields in the Native representation. Arrays
inherit extra fields added to Object, but interfaces do not; interfaces cannot have fields at
all.

and both Object’s and Throwable’s extra fields to SubThrowable so that their subclasses
will inherit the proper fields automatically. The RepFields for these fields must first ask if
a client object is really an Object or Throwable. If so, the hashtable is used; if not, the field
request is forwarded to the corresponding RepField in the appropriate Sub class.

To insert SubObject and SubThrowable properly the Native class loader replaces all
calls to Object constructors with calls to SubObject constructors and all calls to Throwable
constructors with calls to SubThrowable constructors.

There is one problem with this implementation of extra fields for the Native repre-
sentation. Since extra fields are directly inherited from parent classes through the shadow
class hierarchy, the offsets of non—extra fields can change (inherited fields are placed before
declared fields in instances of a class). This means that if native code uses hardcoded offsets
to access fields (instead of the JNTI), this code will break if it tries to access fields that have
been moved. There is such code in Sun’s virtual machine. We hope that future native
code will always use the JNI — if so, our extra fields scheme will work. Currently we have
workarounds for the native methods in the java.io package that use direct offsets. We

have considered proposals for how to implement extra fields in a way that avoids the offset
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problem, but we have not yet explored these approaches.

A.6 Checkpointing

Rivet contains a powerful built—in checkpointing feature. It enables a tool to save the system
state by taking a checkpoint, and at a later time return to that checkpoint. From there the
program will run on a different path than the original path from that state. In order to run
on the same path deterministic replay must be used (see Section A.7).

Before designing Rivet’s checkpointing system we considered how it would be used.
We envisioned a bidirectional debugger taking a checkpoint at regular intervals. When a
user requests to go backward, the debugger returns to the checkpoint just before the target
point in the program, and then uses deterministic replay to advance to the target point.
Such a debugger takes many checkpoints and hence requires them to be inexpensive. Our
design attempts to minimize the cost of taking a checkpoint.

When a checkpoint is taken we need to save the state of the thread scheduler, each
thread’s entire activation stack, which client classes have been loaded (we must run a class’
static initialization method when encountering a class for the first time), and the field values
for every client object and class. Saving every object’s fields on every checkpoint would be
very expensive. Our solution is to make copies of client objects lazily — only when an
object is modified do we bother to save a separate copy of it.

We also need to save the native-level state of the client program. However, we
cannot do so efficiently without requiring that native methods use library routines that
we provide to allocate their memory. We have not investigated implementing this, so for
now we require that client programs do not keep such native state. The core JDK has
native state in the form of tables of file handles, etc., which fortunately do not cause us any
problems because they do not interact visibly with Java-level client code.

Since taking checkpoints must be inexpensive, we do not want to require a tool
to unwind Rivet before taking a checkpoint. For this reason we allow tools to request a
checkpoint at any time; however, the only guarantee we make is that the checkpoint will
be taken before the next bytecode is executed. This allows us to delay checkpoint requests
made during native method execution until after the native method completes and the

system is in a stable state that can be reentered. We cannot take checkpoints during native
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methods because we have no way of saving the lower virtual machine’s stack. This means
that we cannot take checkpoints during upcalls, either. This should not be a problem since
upcalls are rare.

Returning to a checkpoint is a more drastic event than taking a checkpoint. It
causes the virtual machine’s state to change. Thus we require a tool to unwind Rivet before

returning to a checkpoint.

A.6.1 Checkpointing Algorithm

The basic idea is to version objects and checkpoint them incrementally. We copy things at
the object level, i.e., we do not make copies of primitive fields (we copy their containing
objects). Every client object has a version that is checked on accesses to it to see if the
object is stale or needs a new version made. Although we do clone client objects lazily,
we clone the core virtual machine state (the threads and their activation frames) on every
checkpoint.

The notion of time in the client program is captured with the “checkpoint version,”
which is an integer. There is a global version number called currentCheckpoint that
indicates the current version of the client program. FEach checkpoint that is made clones
the virtual machine state and then increments the currentCheckpoint. Cloning the state
involves cloning the scheduler, which clones the threads, which each clones its own activation
stack. The stacks are only shallowly cloned, however; client objects referenced are not cloned
at this point (remember that we are cloning objects lazily).

In addition to client program time, there is also external, real world time. This
is recorded in the form of the “checkpoint count”. There is a global count called
checkpointCount which is incremented every time a checkpoint operation is performed,
both when creating a new checkpoint and returning to an old checkpoint. From an external
point of view, the history of checkpoints is a graph, while from the client program’s point of
view the history is simply a timeline. An example history graph and corresponding timeline
are illustrated in Figure A.9. In this example, three checkpoints were created, followed by
a return to the first checkpoint, and then two more checkpoints were created.

Every object needs to store a pointer to its “old” versions in order to return to
them. Thus every object has its own timeline. Each object must also remember what count

it corresponds to — counter—intuitively, the version without the count is not sufficient.
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Figure A.9: An example global checkpoint history is shown on the left, and the correspond-
ing timeline is shown on the right. The circles are checkpoints, and the numbers on the
transitions correspond to checkpoint counts. The version number of a checkpoint is equal
to its depth in the history graph or timeline.

Consider the objects in Figure A.10, which exist in a program whose global history is that
of Figure A.9. Suppose that at the current point in the program, which is version 2 (and
count 5), we wish to access object A. If we only knew its version number, we would have no
way of knowing if it is current or not. Its version value 2 is ambiguous: it could be stale,
coming from the checkpoint at count 2, or fresh, coming from the checkpoint at count 5.
For this reason we must store the counts with each copy of the object. The versions could
be looked up from the global history, since each count has a unique corresponding version,
but for efficiency we store them with the object. The time saved is more important than
the space lost because checks that examine the version happen frequently (on nearly every
field load and store, as described below).

Before every object modification we detect if a checkpoint has been made since that
copy of the object was created. If so, we clone that object and set the original copy to point
to the clone as its previous version. On every object access, if we detect that we have gone
back in time to before this version of the object existed, we follow the chain of previous
versions to find the proper object; then we copy the proper object’s fields into the current
object. The copy step is necessary in order to keep the original object handle the same
throughout. Doing so is very important, as references to this object could be anywhere and
we do not want to hunt them down and update them. Thus in Figure A.9 each of object

B’s versions points to the original client object A and not to any of its previous versions.
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prev:
B | ver 0
count: O
ref:
A
prev:
ver: 0
B \F/’(r:"vl A count; 0
count: 4 4
ref:
prev:
ver: 2
ror count: 2
B |ver 2 /
count: 5
ref: —

Figure A.10: Two objects in a program that has the global history shown in Figure A.9.
Object B contains a field named ref that references object A. The current client objects are
double rectangles with square edges, while clones are single rectangles with rounded edges.
Note how clones are only pointed to by the previous version pointers used in checkpointing
and never by client field references. The client object handles never change during execution
of the program.

We have a single global history graph and a separate local history timeline for each
object. On every object access we need to bring that object’s local history into accordance
with the global history. We need to revert to a previous version if a checkpoint with a
version prior to the object’s version was returned to at a count later than the object’s
count. Instead of storing the entire history graph, all we need is a data structure that can
determine the earliest version of all checkpoint counts beyond the object’s count. If the
earliest version is less than the object’s version then a checkpoint earlier than the object
has been returned to. For efficiency we can store the count of the last return to a checkpoint
and only check the earliest—version data structure when this countAtLastReturn is greater
than the object’s count.

If we are about to modify an object, we need to create a new checkpoint for that
object if the global count is greater than the object’s count, which means that a checkpoint
has been created since the object was last checkpointed (remember that we immediately

create a new checkpoint after returning to a previous checkpoint). Again we have no need
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/*x If the object passed in is stale, updates it to the
* current checkpoint.
*/
public void onRead(Object obj) {
if (countAtLastReturn > obj.count)
update(obj); // may be stale

}

/** If a new checkpoint has been created since this object was
* last checkpointed, makes a new version of the object
*/
public void onWrite(Object obj) {
if (checkpointCount > obj.count)
newVersion(obj); // new checkpoint

Figure A.11: Checkpointing algorithm’s methods to check if an object needs to be updated
or if a new version of an object needs to be created.

to store the history graph.

Figure A.11 shows pseudocode for the two methods that check whether or not an
object is valid, and if not perform appropriate operations to update the object. For a read
the onRead method is used, for a write the onWrite method. This pseudocode assumes
objects have three fields, count, ver (the version), and prev (points to the previous version
of the object).

Before setting any field of an object, a RepField calls onWrite on that object. The
approach for reads is more efficient. We can avoid a call to onRead on every field read if we
ensure that all objects on the stacks and in the local variables are up—to—date. We do this
by calling onRead on every object copied from a method caller’s frame to the callee’s frame,
and on every object retrieved from a field (so on every read of a field of reference type).
We also call onRead on every object in the current thread’s stacks and locals whenever we
return to a checkpoint. Threads store the countAtLastSwitch, the checkpoint count of the
point where they last executed. Upon switching back to a thread, if the global count equals
the stored count, we do nothing; otherwise, we call onRead on every object in the stack or
locals of every frame on the thread’s activation stack to be sure we have the right versions.
Alternatively, once we have the JIT working, we can have two versions of every method:
one that checks object versions on every field read and one that has no such checks. On a

thread switch, we would use the former version for the first method we switch into, and use

131



the latter everywhere else.

Figure A.12 gives pseudocode for the update method that reverts an object to
an earlier version of itself. Since we want to keep the original client object handle, we
must copy the fields from the previous version clone into the original object; this is shown
in the pseudocode as the checkpoint_copyFieldsOf method. Its implementation will be
discussed later. The update method has some code to deal with special cases such as
interned strings. When we go back in time, for efficiency we do not bother to update the
table of interned strings to what it was since the client cannot tell the difference. This
means we can encounter objects that should not exist at the present moment in the client
program. The update method simply updates the version of any such objects it encounters.

The earliest checkpoint after a given checkpoint count is computed by the
earliestCheckpointAfter method shown in figure A.13. It uses two arrays of ints, one
holding version numbers and the other the largest checkpoint count for which the corre-
sponding version is the earliest. For example, for the global history of Figure A.9, the
version array would be [0,1,2] and the count array would be [3,4,5]. This representa-
tion is used to save space: typically one version is the earliest for a very large number of
consecutive counts.

Figure A.14 shows the method that creates a new checkpoint of an object. It must
first make sure that the object is not stale. Otherwise the clone of the object could have a
version and a count in the future. What it refers to as the checkpoint_clone method will

be discussed in Section A.6.2.

A.6.2 Checkpointing Implementation

The Checkpoint class holds the checkpointing system’s state and contains the code for
updating objects. It has variables corresponding to those global variables discussed in
the previous section: currentCheckpoint is the current version of the state of the client
program, while checkpointCount is the current count. They both start at 0. Taking a
checkpoint increments both of them, clones the core virtual machine state (the client threads
and their activation frames), and remembers what classes have been loaded. To prevent
excessive cloning of threads’ frames, clones of threads that are not currently executing share
the original frames. Only when one of these clones is scheduled to run do we copy the frames.

This optimization reduces the amount of cloning by a significant fraction.
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/** Update to the most recent version of this object */
public void update(Object obj) {
// Find most recent shared point bet. global timeline & obj timeline
int ver = obj.ver;
// First, find earliest version in global timeline after obj’s count
int newVer = earliestCheckpointAfter(obj.count);
if (ver > newVer) { // obj is indeed stale
// Then, walk backward in obj timeline until hit <= earliest ver
Object newObj = obj.prev;
// We need the null check because we do not ever remove some types
// of objects (like interned strings), so they may have no proper ver.
while (newObj != null &% newObj.ver > newVer) {
newObj = newObj.prev;
}
if (newObj != null) {
// Copy all the fields of newObj (we must keep "this" constant since
// the client holds a reference to it), including ver, count, prev.
obj.checkpoint_copyFields0f (new0Obj) ;
} else {
// No appropriate ver (obj shouldn’t exist): simply update this one
obj.ver = currentCheckpoint;
obj.count = checkpointCount;

Figure A.12: Pseudocode for the method that reverts a stale object to a previous version.

As described in Section A.3, references to threads and locks are indices into master
arrays instead of direct references. This level of indirection makes checkpointing much
simpler. It means we do not have to change all references in the cloned state of the scheduler
to point to the cloned threads instead of the original threads. Using the solution adopted
for client objects, to keep the original handle always, would mean too much field copying
(remember that the scheduler gets cloned every time a checkpoint is made).

The core virtual machine state is stored in a class called VMContext. VMContext
has an internal class State that holds all of the checkpointable data (the scheduler, the
threads and their frames). It is State that is cloned, and the VMContext merely points
to the new State, keeping a backpointer to the old one. Checkpointing of client objects is
done lazily, when objects are fetched or written to, as described in the previous section. We
discuss implementing this below.

To return to a checkpoint, the Checkpoint class sets the currentCheckpoint to
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/** Returns the least version whose count is >= count passed in */
private int earliestCheckpointAfter(int count) {
// binary search for count
int max = earliestLength;
int min = 0;
int idx = max / 2;
while (true) {
if (earliestCount[idx] < count) {
min = idx;
idx (max + idx) / 2;
} else if (idx == 0 || earliestCount[idx-1] < count) {
break;
} else {
max = idx;
idx = (idx + min) / 2;
}
}

return earliestValuel[idx];

}

Figure A.13: This method is used by the update method in Figure A.12. It uses two
arrays, one holding versions (earliestValue) and the other the largest counts for which
those versions are the earliest versions for the rest of time (earliestCount). The number

of valid entries in the arrays is held in earliestLength.

/** Make a new version of this object */
public void newVersion(Object obj) {
// Make sure we add the new object in the right place
if (countAtLastReturn > obj.count)
update (obj) ;
// Must keep "this" constant, so make the clone the old version
Object 0ld0bj = obj.checkpoint_clone();
obj.prev = 0ld0bj;
obj.ver = currentCheckpoint;
obj.count = checkpointCount;

Figure A.14: Pseudocode for creating a checkpoint of an object. Note that it must make

sure the object is not stale first by calling update.

134



the value desired, increments the checkpointCount, and notifies the VMContext. The
VMContext follows its backpointers to the old state. The now future states will be garbage
collected since nothing points to them anymore. Objects are updated lazily except for those
in the current thread’s stack and local variables, as described in the previous section. The
semantics of returning to a checkpoint that we want are that the checkpoint returned to
can be returned to again later. In our implementation, we need to create a new checkpoint
immediately after returning in order to keep a copy of the original checkpoint returned to.

When we return to a checkpoint we need to “unload” classes so that their class
initialization routines will be called again. To accomplish this, RClass has a flag saying
whether that class has been “officially” loaded and another for whether it has been “offi-
cially” initialized. Officially means with respect to the client. These flags are turned on
when the class if first loaded and initialized. When we make a checkpoint we store a list
of all classes that were loaded since the last checkpoint (RClassLoader tells VMContext
every time it loads a class). When we go back in time, as we walk back through versions,
we “unload and uninitialize” (by setting the flags) every class that was loaded since the
checkpoint we are heading for. The bytecode interpreter uses a special class name resolver
that claims a class has not been loaded if the loaded flag is off (even if the class has been
loaded by Rivet and has an RClass). When the interpreter generates a load fault for a
class that has really been loaded, it zeros the class’ static fields and re—executes its class
initialization method to simulate re-loading it. A different class name resolver that ignores
the flags is used by parts of the virtual machine that want to know if the class has really

been loaded by Rivet, ignoring whether the client should know about it or not.

Checkpointing of Client Objects

The checkpointing algorithm makes use of three fields present in every object: a version ver,
a count count, and a previous object pointer prev. We use Rivet’s extra fields mechanism
(see Section A.5) to add these fields to java.lang.0Object.

Since tools adding extra fields to an object will want them to be checkpointed
along with the object’s normal fields, and tools will often be storing non—client objects
in those fields, we have the Checkpointable class. All checkpointing is either of a client
object or of a subclass of Checkpointable. Checkpointable is an abstract class that contains

the three checkpointing fields and the methods onRead, onWrite, checkpoint_clone, and
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checkpoint _copyFieldsOf. A tool must call onRead or onWrite before every read or write
to an object stored in an extra field (except for access through an RTIField, of course,
which does its own version checking). Since the tools’ needs and GObject’s needs overlap,
GObject inherits from Checkpointable. Thus we uniformly treat tool and internal virtual
machine checkpointed non—client objects in the same manner.

The fact that tools must call onRead and onWrite at the appropriate times for every
Checkpointable object that they store is a bit cumbersome. Another solution might be to
require all non—client objects that will be checkpointed to be stored behind some interface,
and all access to such objects would have version checking done automatically. There are
tradeoffs between ease of use and efficiency here. Currently there is no such interface, but
experience has shown that it is all too easy to leave out calls to onRead or onWrite, leading
to subtle bugs in tools.

Whenever the virtual machine creates a client object it calls the initialize method
of the Checkpoint class to set the object’s version and count fields to the current global
values. The access methods of the RepFields contain the onRead and onWrite method
code for efficiency (rather than having them call methods in Checkpoint). The Rep-
Fields directly call Checkpoint’s update and newVersion methods. For client objects,
these use Replnterface methods called cloneObjectNoCheckpoint and copyFields to cre-
ate new objects and update old ones. They have to use special “NoCheckpoint” methods
for cloning that themselves use special object creation methods that do not initialize the
checkpoint fields and do not trigger client object creation events. Also, because we use Rep-
Fields to read and write the checkpointing fields themselves, we must use special methods
setIntNoCheckpoint for ints and setNoCheckpoint for reference fields that write to a field
without performing onWrite. We do not bother with “NoCheckpoint” methods for reading
primitive fields because we do not do checkpointing on primitive field reads as explained
in the algorithm description. For Checkpointable objects Checkpoint has separate meth-
ods updateCheckpointable and newVersionCheckpointable, which call Checkpointable’s
checkpoint_clone and checkpoint_copyFieldsOf methods to clone and update objects.

To checkpoint array element accesses, we treat arrays like objects whose instance
fields are array elements. We have special “NoCheckpoint” versions of the array copying
methods for cloning arrays.

Checkpointing of static fields requires extra work in the Native representation. In

136



the Generic representation it does not because static fields are stored in a special GObject
for each class, and since GObject is a subclass of Checkpointable checkpointing of static
fields works just like that for instance fields. For the Native object representation, however,
static field values are kept in the lower virtual machine’s class object, which we do not
have direct access to. Thus we need to store the old static values separately, and we need
every field read to call onRead because the object owning the field, the class object, is not
checkpointed by us. Alternatively, we could have every return to a checkpoint go through
and update every single loaded class. The efficiency of this approach relative to the cost of
calling onRead on every field read has not been investigated.

A static field has a one—to—one relationship with its RepField, simplifying the storage
problem: each RepField for a static field needs to keep track of the history of just one
value. We have static fields store old values in classes called Holders, one for each type
(StaticShortHolder, StaticDoubleHolder, etc.). These Holders are what is checkpointed
(they each extend Checkpointable). For efficiency we do not need to update the Holder’s
value with the real static value on every write to a static field; we only need to update when
we clone the Holder.

Extra fields stored in hashtables are checkpointed just like other fields. Static extra
fields use Holders to store their fields’ histories, and can use the Holder to store the current
version as well without worrying about being consistent with an official value stored by the
lower virtual machine.

For efficiency, we do not want RepFields to be calling checkpointing methods when
the client program has no intention of ever taking any checkpoints. Thus each variety of
RepField has two types: one that performs all of the checkpointing checks and one that
does no checkpointing at all. Which type is created depends on a flag set via an argument
to Rivet when it starts up. We end up with different versions of RepField for arrays,
instance fields, static fields, extra instance fields, and extra static fields. In addition, we
need to handle Throwable’s (non—extra) fields specially (remember that we share Throwable
with the lower virtual machine). For each of these field types we have separate classes for
checkpointing versus non—checkpointing modes. The classes used to implement RepField
for the various types of fields are shown for the Generic representation in Table A.2 and for

the Native representation in Table A.3.
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Field Type | No Checkpointing Checkpointing

array GArrayAccess GChecked Array Access
instance BooleanField CheckedBooleanField
ByteField CheckedByteField

static StaticBooleanField | StaticCheckedBooleanField
StaticByteField StaticCheckedByteField

Table A.2: Classes used to implement RepField for the Generic representation for the
various types of fields. These classes all checkpoint the GObject used to hold the field
values (a GObject is used for static fields and array elements as well as instance fields).
Since GObject is Checkpointable, all of these classes call updateCheckpointable or
newVersionCheckpointable. There are different classes for each type of both instance
and static fields; thus in addition to the classes for booleans shown in the table there are
classes for floats, ints, etc.

Field Type No Checkpointing Checkpointing

array NArrayAccess NCheckedArrayAccess
instance NField NCheckedField

static NField NStaticCheckedField

extra instance | NExtraField.InstanceField | NExtraField.InstanceCheckedField

extra static NExtraField.StaticField NExtraField.StaticCheckedField

Throwable NThrowableClass. NThrowableClass.
NThrowableField NThrowableCheckedField

Table A.3: Classes used to implement RepField for the Native representation for the various
types of fields.
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Benchmark No checkpoints Checkpoints

java Rivet | slowdown Rivet | slowdown | ratio
SPEC _201_compress | 75.415 | 17711.271 234.9 | 18049.153 239.3 | 1.02
SPEC _202_jess 2.382 250.587 105.2 255.660 107.3 | 1.02
SPEC _205_raytrace 9.033 | 1692.260 187.3 | 1720.767 190.5 | 1.02
SPEC _209_db 0.207 30.179 145.8 30.498 1473 | 1.01
SPEC _227_mtrt 8.779 | 1683.085 191.7 | 1721.927 196.1 | 1.02
JavaCUP 14.180 1824.480 128.7 1904.000 134.3 | 1.04
geometric mean 159.8 163.3 | 1.02

Table A.4: Time taken in seconds to run six different benchmarks on JDK1.1.5 on Linux
on a Pentium IT 200 MHz machine with 64MB RAM. The SPEC benchmarks are from the
JVM Client98 Release 1.01 benchmark suite [SPEC]. They were each run with the -s1 flag.
These are not official SPEC results. The JavaCUP benchmark involved running JavaCUP
[CUP] on the syntax of the Java language. The slowdown columns indicate the slowdown
of Rivet versus java; the ratio column indicates the slowdown of using checkpoints versus
not using checkpoints. The Rivet JIT was not enabled.

A.6.3 Performance of Checkpointing
Time Performance

In terms of efficiency, checkpointing in the Generic representation is not bad. For the
Native representation, however, we have to use reflection to copy all of the fields for both
cloneNoCheckpoint and copyFields. Calling checkpointing methods on every write and
on object reads is a minor performance loss. In applications that do not do any actual
checkpointing, the cost of using the checkpoint—enabled fields is very low. Table A.4 shows
the results of running Rivet on six benchmarks, first with checkpoints disabled and then
with checkpoints enabled. None of the benchmark programs take any checkpoints. As
the table shows, using the checkpoint—enabled fields slows a program down by about two
percent.

Time taken to make checkpoints depends on the underlying virtual machine’s ef-
ficiency at memory management, as indicated by using the Checkpoints tool. This tool
makes n checkpoints in a row and then returns to each of those n checkpoints, one after

the other. The results are shown in Table A.5 for both a program with one thread and
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n | Make Checkpoint | Return To Checkpoint

1 thread | 5 threads | 1 thread 5 threads

50 0.44 0.62 0.42 0.90
100 0.39 0.58 0.41 2.26
500 1.81 4.77 1.40 7.09
1000 3.68 7.06 2.10 28.45
3000 9.77 N/A 5.19 N/A
5000 16.59 N/A 7.34 N/A

Table A.5: Time taken in milliseconds to create checkpoints and to return to checkpoints.
Not enough memory was available to take more than 2500 checkpoints with 5 threads.
Note that returning to a checkpoint entails creating a new checkpoint; thus the lines where
making takes longer than returning are misleading and must be reflecting the lower virtual
machine’s garbage collection times. These numbers were recorded on JDK1.1.5 on Linux
on a Pentium IT 200 MHz machine with 64MB RAM.

a program with five threads. The table suggests that returning to a checkpoint can be
faster than creating a checkpoint; however, recall that returning to a checkpoint includes
making an initial checkpoint so that the checkpoint returned to can be returned to later.
This indicates that these times are misleading — the underlying virtual machine’s garbage
collector is coming into play here.

In long testing runs, simply taking the number of checkpoints taken and dividing it
by the total time taken yields results ranging from 3.6 milliseconds to 5.3 milliseconds to
make a checkpoint. This would only be valid if the tester did nothing but take checkpoints.
These numbers are upper bounds since the tester does more than just make checkpoints.
They provide additional evidence that the larger numbers in Table A.5 are reflecting more
than just checkpointing time.

Results from working with Kaffe [Kaffe], a Java virtual machine written in C, and
using fork to make checkpoints indicated that one fork takes about 0.5 milliseconds. Table
A.5 indicates that even in Java we can do as well as that for small numbers of checkpoints
that do not invoke the garbage collector. We believe that our incremental checkpointing

system could do far better than forking on a high—performance virtual machine.

140



A
A
prev: :
B |ver:3 A | PV
ref: - ver: 2

Figure A.15: Checkpointing garbage collection: picture when current version is 3. No
garbage. Real client objects are represented as double rectangles with square corners;
clones are indicated with single rectangles with rounded corners.

Space Performance

The old versions of objects do not clutter up memory. An original object handle points to
its old version through a chain of backpointers. When we go back in time we write over
the head of the chain (the prev pointer of the original object). That was the only pointer
leading to any of the now “future” objects (recall that other client objects that refer to this
one always use the original handle). Thus the unneeded and unwanted “future clones” will
now be garbage collected.

Figures A.15 and A.16 illustrate a simple example of how old clones get garbage
collected. As can be seen in the second figure, the old version 1 objects are now garbage
since they are not reachable from anywhere.

This automatic garbage disposal of old versions does not work for objects whose
prev field is kept in a hashtable. For these objects we have to go to quite a bit of work
to garbage—collect future clones. Here are some methods for doing this that we considered

and rejected:

e Give Replnterface a returnToCheckpoint method that is called whenever we re-
turn to a checkpoint. For the Native representation this method goes through a
list of InstanceCheckedFields that exist, twice. On the first run-through it calls
markFutureClones. markFutureClones goes through and calls onRead on every client
object (not on clones of them — we must add a new extra field to every object, a

flag that tells us whether an object is a client object or a clone used for checkpointing
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Figure A.16: Checkpointing garbage collection: picture when current version is now 1.
Intermediate objects are now garbage (indicated with a dashed line). Real client objects
are represented as double rectangles with square corners and are assumed to have permanent
references to them so that they are not themselves garbage; clones are indicated with single
rectangles with rounded corners.

purposes). Then it makes a list of all objects whose versions are in the future. On the
second run—through deleteFutureClones is called, which removes from the hashtable
everyone on the list created by markFutureClones. We have to do it in two passes
because we do not want to delete an object that another field’s hashtable contains (it

might then ask for some checkpointing field and get back the default value, e.g.).

The problem with this approach is that it is terribly inefficient. We have to walk twice

through a lot of hashtables on every return to a checkpoint.

e Version the hashtable used by InstanceCheckedField. This would work, but we would
have to deeply—clone the hashtable, which would take too much time and memory.
If we did not, the old copies of the hashtable would share objects with new copies,
so those objects’ state changes would be seen in the old hashtables. For example,
consider arrays, whose extra fields are stored in hashtables. If an array has some of its
elements changed those changes will be visible in all the old versions of itself stored
in the old hashtables. If we later go back in time, the old hashtable we return to will
of course contain the proper checkpointing fields for the array, indicating that it does
not need to be updated. However, the array will contain the modifications made to

it in the future.

What we actually do has two parts. First, we delete the future clones of an object

142



when we do a copyFields on it (when we are reverting the object to an old version). The
problem with this is that we never delete objects that are created and never referred to again
(namely, those that do not exist in the past). To delete those objects, we do something
similar to the first rejected proposal: we give Replnterface a returnToCheckpoint method
that is called whenever we return to a checkpoint. For the Native representation that
method goes through a list of all InstanceCheckedFields that exist and deletes fields for
objects that should not exist at the current point in the client program. Since there are
usually not too many of these (returns that do not go far back in time are more common
than those that do) the returnToCheckpoint method only performs this expensive sweep
every few hundred returns.

In the future we will want to be able to delete checkpoints. Our bidirectional
debugger (based on [Boo98]) will be taking many checkpoints but wanting to keep relatively
few of the older ones as time goes on. For example, it may want one checkpoint every
millisecond for the last 10 milliseconds, then one every 10 milliseconds for the next 100
milliseconds, then one every 100 milliseconds for the next second, then one every second for
the next 10 seconds, etc. The object checkpointing scheme allows for this with its linked-list
structure: we can snip out version of objects from the middle of the chain. We would do

this lazily, of course, just like the rest of the object checkpointing.

A.6.4 Limitations of Checkpointing

As mentioned earlier, we cannot currently checkpoint native state, so we require that clients
do not keep any. In order to checkpoint it we would need to provide special library routines
for memory allocation that tools’ native method could call.

We also cannot checkpoint the lower virtual machine’s stack, which means that we
cannot checkpoint during native methods or upcalls.

Our incremental object checkpointing has its problems. Native methods can do
field accesses without going through our checkpointing onRead and onWrite methods. If
native methods access only fields on their “this” object, on which we always call onWrite
immediately before the native call, then everything will work fine. However, we must require
that clients do not access any fields other than fields of “this”. In the future we hope to
be able to systematically deal with JNI field access to non—"this” objects. We will always
have to special-case the core JDK’s direct field offset use, though.
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Another limitation is that extra fields that hold reference types must be filled only
with client-level objects, or with objects that implement Checkpointable. If an object not
meeting these criteria is stored in an extra field, checkpointing will not work.

Finally, as mentioned in Section A.6.2, allowing tools to have extra fields be check-
pointed is a very powerful feature. However, the current methods for doing so are compli-

cated and make debugging checkpointing errors in tools difficult.

A.6.5 Alternative Checkpointing Schemes

Checkpointing schemes that we considered but discarded include:

e Add a level of indirection to avoid copying when going back in time. Around each
object we would place a wrapper containing the checkpointing fields and a pointer
to the current object. Then to change object versions we would just change the
pointer and would not need to copy fields. The problem with this is that in the
Native representation we must use the same object representation as the lower virtual
machine. We cannot simply strip the wrapper off of an object before calling a native
method on it because the object could refer to other objects who will still have their
wrappers. This fact also kills the idea of using the Generic representation and copying

fields to special lower virtual machine objects used only for native method calls.

e Have no extra fields, and keep version information in a method call’s frame, with
every object in there having that version. The problems are that when we make a
checkpoint we will have to clone a lot of objects (all objects in the top frames of each
thread), and more importantly, with an arbitrary object reference there would be no

way to tell if the object is stale or not.

e Checkpoint fields, not objects. Every field could essentially be an array of values with
the index into the array being the version number of that value. The problem with this
is that every field in the program grows with every checkpoint made, even those that
are infrequently accessed. Another choice might be to have two arrays for each field,
the first holding values and the second the versions corresponding to those values.
This way space is not wasted on fields that are not changing. The main problem with
these field approaches is that it is very hard to delete previous checkpoints, something

that we will want to do once we have tools like the debugger taking many checkpoints
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but wanting to keep relatively few of the older ones as time goes on. The object
checkpointing scheme allows for this with its linked-list structure. Using anything

other than an array for fields would lead to excessive storage overhead.

e Clone the entire system on every checkpoint. This would simply be too slow. As
mentioned in Section A.6.3, doing something like a fork takes even longer than taking
one checkpoint in Java. Rivet needs to be able to take many checkpoints per second.

This means that it must perform incremental checkpointing.

A.7 Deterministic Replay

In order to replay deterministically we need to know when class loads happened, what input
or output was performed, and when thread switches occurred (including what thread was
switched to). Note that since we need to log all input and output, we must require that
native methods other than those in the standard java.io package perform no input or
output. We also need to record when finalize methods were called and play tricks with
the garbage collector to make sure they are called at the same time again. Or we could
use something like the tester’s finalization criterion and assume that the user does not care
about exact replay of finalizers; this is the choice we made.

The “when” for all of these logged operations is a global operation counter (it is
already used for thread preemption and instruction—stepping). For every bytecode executed
we increment the counter. On replay, we just wait until we reach a counter value where
something should happen (like a thread switch) and make it happen then. There are three
modes of execution: normal execution, record, and replay. Normal execution does not
interact with the replay system. Record mode is normal execution with the addition of
logging all events that need to be replayed, while replay mode replays the recorded events.

In order to record that something happened at a certain instant in time, we need to
make sure we have the semantics of these instants correct. We are using an operation count,
so we need to be precise about when we increment it. We do not want to increment the
count, perform some operation followed by an event we want to record, and then log that
the event happened at that count. On replay we would execute the event before performing
the operation, which is incorrect. For this reason, the core interpretation loop contains

the method instructionDone. This is called after every operation. instructionDone
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increments the operation count and, if in replay mode, checks to see if an event should be
replayed. Sensitive operations like native method calls must be careful about when they
call instructionDone. We need to call it whenever we are at a point where an event we
would like to replay could occur.

instructionDone is called after an invocation (invoke* bytecode) of a non—native
method and again after the return (return* bytecode). However, it is not called for the
invocation of a native method. It is only called for a native method after the method
completes. This is because to Rivet native methods are atomic and we do not want events
happening in the middle of them. This means we cannot handle events in native upcalls,
but we cannot handle thread switches or checkpoints or input or output there anyway.

instructionDone signals class load faults and class initialization faults by setting
a flag in the current thread. These flags must go in the thread and not in the VMContext
because during the recording execution a fault could happen right after a thread switch
was asked for but before it was carried out, in which case instructionDone would hit it
before the thread switch on replay if it were kept in the VMContext — we need to save
it for when we reschedule that thread. These flags are checked on each iteration of the
runThreadForAWhile loop.

When runMethodForAWhile returns, the opcode at the current PC has not been
completed nor has instrutionDone been called on it. In some cases the PC is that of an
instruction that attempted to execute but needs something else done before it can execute
(load fault, init fault, monitorenter), in which case that something else will be done and the
same opcode re—executed; in other cases the PC is that of an instruction that has nearly
completed but just needs some higher level actions performed (invoke, return, exception),
in which case those actions will be performed, instructionDone called, and the PC rolled
onward. Thus, instructionDone is called after a monitorexit, but not after a monitorenter
that fails to obtain its lock, because we can and should re—execute the failed monitorenter,
but we should not re-execute the monitorexit.

To replay the thread ordering, on replay we disable all threads but one and keep
running that thread until we reach the first recorded thread switch. Then we disable it
and enable the next thread. In order to replay input and output, during record mode we
intercept all native java.io input and output methods. We go ahead and perform the real

native method, but we log what goes out or is read in. On replay we do not perform the
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real native method. For a read we feed the logged bytes to the program; for a write we do
nothing. Once we reach the end of the replay log the file position should be where it was
and a future write will put its data in the proper place.

Note that sometimes we may be replaying data that was recorded in a different
session. A tool may wish to supply the logged input or output bytes, and may wish to
have the writes actually performed on replay. Thus there may be several modes of replay.
This is unimplemented right now. We could have one object that supplies Rivet with input
or output during any execution (not just replay), with its source either the lower virtual
machine (which actually performs the read or write), Rivet’s replay buffer, or a tool.

To replay native methods properly we need to be able to replay their state changes.
We must either require that they be functional with respect to their arguments and the
Java state of the system (this means that calling the native method multiple times with the
same arguments and the program in the same Java state should produce the same results,
so we can simply re—execute the native call to replay it), or log the changes they make to
the system. Since we already require that they only change fields of the “this” object, we
would not have very much to log. However, we have not yet implemented any logging, so we
assume that native methods are indeed functional. We already special-case the core JDK
native methods, and this should not exclude many client Java applications, since most do
not use native methods.

Note that this deterministic replay is not the type required by the tester (see Section
3.3.2).

A.8 Limitations of Rivet

To summarize the various assumptions that Rivet makes for its features to work, Rivet’s
requirements on client application native methods are as follows (we special-case the core

JDK):
e Native methods must not construct Java objects without calling Java constructors.

e Native methods must not block. Note that Rivet could remove this requirement by

having a separate thread for native method calls.

e For deterministic replay to work, native methods cannot perform any input or output.
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e Rivet cannot thread switch, checkpoint, or record events for replay during Java meth-
ods called by native methods. So long as such upcalls are short this should not pose

a serious problem.

e Native methods should not perform field accesses on other than the “this” object,
since checkpointing needs to know of all field accesses and since deterministic replay

depends on native methods being functional (for now we do not even replay changes

to fields of “this”).

e Native methods must not use direct hardcoded offsets for field access; they should use
the Java Native Interface (JNI), since direct offsets do not work under the extra fields

scheme.

e Native methods should not keep native state, since Rivet cannot checkpoint it.

As discussed in Section 3.1.2, a well-constructed program’s native methods normally
satisfy all but the last two of these requirements. The last requirement could be removed
by providing a native library that a client’s native code would use to allocate memory,
registering it for native—level checkpointing. The JNI requirement should be met by newer
programs; JNI is being promoted as the solution to binary compatibility problems across
multiple versions of Java virtual machines. However, current JDK native libraries (such as
java.io use direct field offsets which Rivet handles as a special case by re-implementing
those libraries.

Rivet has other limitations. We have our own version of Throwable that we must
distribute to users. Also, in order to perform generic lower virtual machine to client object
conversion (for when native methods violate our assumptions and construct client objects
without calling Java constructors) we need a core JDK classes.zip in which all fields are
public. Thus we must distribute our own classes.zip or distribute a program to modify

a user’s existing classes.zip, either of which is undesirable.
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