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Abstract
Software code caches are increasingly being used to amortize the
runtime overhead of tools such as dynamic optimizers, simulators,
and instrumentation engines. The additional memory consumed by
these caches, along with the data structures used to manage them,
limits the scalability of dynamic tool deployment. Inter-process
sharing of code caches significantly improves the ability to effi-
ciently apply code caching tools to many processes simultaneously.

In this paper, we present a method of code cache sharing
among processes for dynamic tools operating on native applica-
tions. Our design also supports code cache persistence for im-
proved cold code execution in short-lived processes or long initial-
ization sequences. Sharing raises security concerns, and we show
how to achieve sharing without risk of privilege escalation and with
read-only code caches and associated data structures. We evalu-
ate process-shared and persisted code caches implemented in the
DynamoRIO industrial-strength dynamic instrumentation engine,
where we achieve a two-thirds reduction in both memory usage
and startup time.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Run-time Environments, Compilers, Opti-
mization.

General Terms Design, Algorithms, Security, Performance.

Keywords Dynamic Instrumentation, Binary Translation, Soft-
ware Code Cache, Tool Scalability.

1. Introduction
Dynamic languages, emulators, and other tools typically employ
software code caches to store frequently executed sequences of
translated or instrumented code for use on subsequent executions,
thereby avoiding the overhead of re-translation. These caches,
along with the data structures to manage them, however, consume
significant amounts of memory. Initially, code caching tools were
applied to only one process at a time, and the resulting memory
expansion was deemed acceptable. As code caching technology
has matured and its applications expanded to include security, op-
timization, auditing, profiling, and other features, applying code
caches to all processes simultaneously, including on production
systems, has become more desirable. When these tools are applied
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to many processes simultaneously the combined extra memory us-
age ultimately degrades performance.

This situation is similar to what operating systems originally
faced with multiple applications executing similar code simultane-
ously. Their solution was to invent shared libraries to reduce re-
source usage and the cost of context switches. Unfortunately, code
caches undo the benefits of shared libraries by making the shared
code private again. To approach the scalability of native applica-
tions, code caching tools should take the shared library approach
via inter-process sharing of code caches. Code cache sharing intro-
duces new difficulties not present with shared libraries, which are
statically generated and constant, while code caches vary across
applications and executions:

• Code caches exported by separate processes must be merged.
• Code caches must be kept synchronized with their source appli-

cation code.
• Different processes may have modules loaded at different ad-

dresses, different versions of modules, or varying dynamic
modification to modules.

• Instrumentation added to the code cache also varies by tool and
process.

• Code caches must be as secure as their source application code
from malicious or inadvertent modification.

Code caching systems are expected to achieve all of these objec-
tives transparently without introducing performance degradations.

This paper presents a method of inter-process code cache shar-
ing for dynamic tools operating on native applications that solves
the above challenges. Specific contributions include:

• A design for code cache sharing among processes that also
supports persistence to improve cold code execution for short-
lived processes or long application initializations.

• An adaptive-level-of-granularity code cache that supports min-
imal data structures, persistence, and inter-process sharing
for typical unchanging application code while dynamically
switching to a finer-grained model that performs better for
dynamically-changing code.

• A security scheme that avoids privilege escalation while still
allowing a high-privilege process to share and persist its code
caches with low-privilege processes, as well as allowing low-
privilege processes to share caches among other processes of
the same user.

• A method to keep code caches, code cache exit trampolines,
and data structures read-only in steady state with no overhead,
protecting them from malicious or accidental modification.

• Implementation and evaluation of process-shared and persisted
code caches in an industrial-strength dynamic instrumentation



engine. We achieve a two-thirds reduction in both memory
usage and startup time.

The next section describes the motivation for and goals of our
inter-process sharing in more detail. Section 3 presents a threat
model and describes our security solution. Section 4 gives details
on our code cache design, which we have implemented in the Dy-
namoRIO [5] industrial-strength dynamic instrumentation system,
while Section 5 evaluates our results.

2. Inter-Process Sharing
Dynamic optimizers and runtime instrumentation engines are es-
sentially in-process virtual machines whose data structures and
code caches add to the memory usage of the native application.
While modern operating systems share the application code con-
tained in the executable and libraries among all processes on the
system, the virtual machine’s code cache and data structures are
not shared, resulting in a scalability limit for dynamic tools that
is lower than the native limit. An example is our benchmark of
booting a laptop with all processes in code caches, which without
sharing uses 110 megabytes additional memory beyond that used
natively (Figure 3), even with a very efficient code caching system.
Launching a number of desktop applications quickly adds tens of
megabytes to that figure (Figure 5); the additional memory is likely
to exceed available memory on some systems.

2.1 Goals
Our primary goal is to support systemwide deployment of dynamic
code caching tools by raising the scalability ceiling without sacri-
ficing security. Our approach is to employ inter-process sharing in a
secure manner, including providing self-protection: if every appli-
cation on a system is to be executed inside a code cache, malicious
or accidental overwrites of the cache must be prevented in order to
achieve robustness.

In addition to reducing memory usage, a secondary goal is to
improve the performance of infrequently-executed, or cold, code,
such as that found in short-lived applications and long application
initialization sequences. As there is little opportunity to amortize
code caching overhead without code re-use, code caching tools
typically display poor performance on cold code.

2.2 Granularity of Sharing
A key design decision for inter-process sharing is the unit or granu-
larity of sharing. In this paper we consider code caches that contain
translations of native application code. Native applications are or-
ganized into modules, where the executable image itself and each
shared library is a separate module. Modules are designed to allow
inter-process sharing of their read-only sections: code and read-
only data. The natural granularity of code cache sharing, then, is a
mirror of the native code: at the module level.

We considered both larger and smaller units than modules but
discarded both. Larger units of sharing, such as combining mul-
tiple modules, or sharing sequences of code that cross module
boundaries, will only be shareable with other applications that have
loaded the same set of modules. By sticking with intra-module code
we align code cache shareability, removal, and versioning with the
units of code that the application loads, unloads, and updates: mod-
ules. We also see no advantage to breaking up modules into smaller
units for purposes of code cache sharing, other than perhaps split-
ting by page in order to reduce memory usage and validation costs
(though as Section 3.2 shows we avoid per-page validation checks).

In our design we share only code that has been executed; we
do not attempt to statically translate the entire module into a code
cache. Even with this approach, an application that uses very little
of a module may be forced to load a shared code cache that contains

much more code than it needs. One alternative approach is to load
a shared cache lazily, in pieces, rather than loading it all up front.
We chose not to implement that, however, relying on the operating
system’s demand paging to bring into physical memory only the
actual working set of the application. After all, most applications
use a small fraction of any given shared library’s native code, a
parallel situation to our code caches.

We do not attempt to share or persist code not contained in
modules. Such dynamically generated code is much less likely to
be used identically in multiple processes in any case, along with
being more difficult to version and identify.

2.3 Mechanism of Sharing
In addition to choosing the code cache units to share, we have
two further key design decisions. First, we must decide whether
live caches (i.e., caches being actively added to) will be shared, or
only frozen caches no longer being modified. The former is more
complex, requiring coordination among multiple processes when
adding to the cache, as well as raising security and self-protection
issues from the writable cache. Therefore, we chose to share only
frozen, read-only caches.

The final design choice is the actual method of achieving inter-
process memory sharing. This can be accomplished using either
files or anonymous shared memory. An advantage of a file-based
approach is that inter-process sharing and inter-execution persis-
tence are both realizable from the same code cache design. We de-
cided to go this route in order to improve both scalability and cold
code performance. Many of the design requirements are identical
between file-based and memory-based schemes: the code cache and
its data structures must be made process-independent, and each of
the challenges listed in Section 1 solved (merging; handling mod-
ule versioning, rebasing, and modifications; allowing instrumenta-
tion; and maintaining security). There are additional complexities
that arise only when using files, including handling underlying plat-
form changes due to files being shared across machines and ensur-
ing files on disk have not been tampered with. Section 3 discusses
security issues with code cache files in more depth, while Section 4
presents details on our solutions to the other challenges in design-
ing shareable and persistable code caches.

3. Security
Our goal is to avoid opening up new vulnerability vectors when
executing from a shared or persisted code cache that do not exist
natively. This section discusses our threat model and our solution
for minimizing security concerns while still achieving substantial
sharing.

3.1 Threat Model
We assume that a local user is able to create a new file, or modify
an existing file, and give it arbitrary contents, provided the user’s
privileges allow such file writes. We also consider that a remote
user can do the same thing, either via an exploit that allows arbitrary
execution or only allows file creation. Given that our code caches
are contained in files, we must limit modification of those files. The
two primary concerns are:

Code modifiability If a user who does not have privileges to write
to an application’s executable or library files on disk is able to
write to a persisted code cache file that will be executed by that
application, then the caching system has introduced a vulnerability
vector that was not present before. For example, a remote user of
an ftp server can legitimately write a file, but must not be allowed
to create a code cache file that will be picked up and executed by
the next invocation of the ftp server.



Another aspect of code modifiability concerns in-memory code
caches, as well as code cache data structures. Our solution for
self-protection of the code caching system is to employ read-only
caches and data structures as described in Section 4 and to avoid
sharing writable memory as stated in Section 2.3.

Privilege escalation Unintentionally permitting a low-privilege
user to control code executed by a higher-privilege user by cre-
ating or modifying a persisted code cache is a form of privilege
escalation. Any inter-process communication used as part of the
code cache sharing process, whether live or via file intermediaries,
where a low-privilege process sends input to be acted on by a high-
privilege process, is a potential vector of privilege escalation. We
designed our process-shared and persisted code caches to avoid
privilege escalation, as the next section shows.

3.2 Shareable Code Cache Generation and Accumulation
To avoid privilege escalation we cannot allow a code cache gener-
ated by a low-privilege process to be executed by a high-privilege
process. We could attempt to perform verification by the high-
privilege process that the cache matches the original code; how-
ever, guaranteeing that the verifier is both complete and free of ex-
ploitable errors is rarely achievable in practice. Thus, there would
still exist a potential vector that does not exist natively for full com-
promise of the high-privilege process by a low-privilege process.
We consider any privilege escalation risk to be unacceptable, and
in our design we disallow sharing from low to high.

To enable sharing from high to low, we identify a user or set
of users on the system to form a trusted computing base (TCB).
On Windows a natural choice is the System user, while on UNIX
it could be root or some set of capabilities if privileges are finer-
grained. The set of users in the TCB will be considered equivalent
with respect to privilege escalation, so clearly lower-privilege users
should not be part of the TCB.

Our shared code caches form a two-level hierarchy with the
TCB at the top and all other users at the bottom. The bottom-level
(non-TCB) users are isolated from each other. A code cache pro-
duced by the TCB is usable by everyone, while a code cache pro-
duced by any other user is only usable by that user. On Windows,
many service processes run as System, enabling significant global
sharing of the code caches corresponding to common shared library
code.

To avoid allowing code modifiability, we store both types of
persisted cache files in protected directories writable only by the
TCB. Any alternative requires full verification on each use of a
code cache, which has significant performance implications (as
well as requiring a verifier for the TCB caches, which we want
to avoid). Even if an executable or library file is in fact writable by
a lower-privilege user, we store its shareable persisted code cache
in a protected directory for simplicity.

Since shareable caches are stored in protected directories, a
TCB process must do the actual creation of persisted cache files.
One option is to statically generate code caches containing all code
contained in the native module files. However, there are two disad-
vantages here. The first is that such static operations suffer from the
limits of static analysis: incomplete or incorrect code identification.
Missing code is acceptable as the missed code will be discovered
at runtime. Data incorrectly treated as code, however, while usu-
ally innocuous since never legitimately reached, is a problem for
security systems that do not want to allow possible malicious exe-
cution of such non-code. The second disadvantage is that the entire
module must be translated, while even the union of the code from
that library used by all applications on the system is likely to be
a fraction of the code in the module (see Figure 4 in Section 5.1).
Limiting shared code to code that is actually executed keeps code
caches small and working sets compact.

We thus use a process running as a TCB user to create each
persisted code cache given information on what code was executed
in a target process. We again have two design choices: we could
supply only a list of starting basic block addresses to keep the
input and thus the vulnerability risk narrow, or we could have each
target process produce a full-fledged persistent code cache and
have the TCB process verify and publish it. We chose the latter
arrangement, with the pre-published persisted caches stored in a
directory writable only by the producing user. Our design thus has
a single directory of globally-shareable caches writable only by the
TCB and for each user a directory of user-shareable caches writable
only by the TCB plus a directory for generation of candidate caches
writable by the user.

Verification involves ensuring that the code cache matches the
native module code that it purports to represent, modulo translation
performed by the runtime system. Publishing entails copying it to
the protected directory with a name that makes it usable by other
processes. We leave any merging of new code with an existing
persisted cache to the process producing the new cache. While
this decentralized merging combined with separate publishing can
result in the loss of code if we have simultaneous production of
new code from the same base cache, it does make the verifier
simpler and thus further shrinks the set of security-critical code.
Furthermore, we execute the publishing step in a restricted context
with an inherited file handle and no other privileges, narrowing the
vulnerability window further.

This cache generation scheme guarantees no privilege escala-
tion, as nothing writable by other than the TCB is ever an input
to the verifier when producing a TCB globally-shared cache. For
non-TCB caches, there is a possibility of code modifiability where
it did not exist before, if there is an error in the verifier. We con-
sider this an acceptable risk, and much less serious than the risk
of privilege escalation when using a verifier across privilege levels.
There are often other existing vectors for executing new code at an
existing privilege level given our threat model of local or remote
write access.

3.3 Consistency
In addition to ensuring that code cache files have not been forged
and were legitimately generated from executed application code,
we must keep them synchronized with that application code. Ap-
plication executables and libraries are not unchanging. Patches and
security or feature updates or upgrades produce new versions on
a regular basis, while local tools such as rebasing optimizers also
legitimately modify module files. A persisted code cache must be
invalidated if its corresponding application module differs from its
state at the time of persistence. A module’s stored version, check-
sum, and size can be used as a first order consistency check. If these
are used to calculate the identifier in the shared cache namespace,
then multiple simultaneous versions are naturally supported with
no extra work.

A full consistency check requires a byte-by-byte comparison.
In our design it is only performed offline during verification prior
to publishing; at load time we use only checksums as consistency
checks. In our threat model, an adversary able to maliciously mod-
ify an application module file and fool our checksums should be
cause for far more worry than tricking a code caching system into
executing code that the adversary can just as easily have executed
natively. Consistency checks are primarily to support legitimate
module changes. We use an MD5 checksum of the module code
section (the only part of the module that matters to the persisted
cache) that is stored in the persisted cache file and is checked ver-
sus the in-memory module at load time. As Figure 1 shows, even
this checksum calculation has a noticeable performance hit. Thus,
we support relaxing the checksum to include only an MD5 of the
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Figure 1. Overhead of consistency checks on our initialization-
time benchmark set (see Section 5.2). A full module check cal-
culates an MD5 over the entire application module code section,
while a full cache check calculates an MD5 over the complete per-
sisted cache file. Partial checks for both only consider the first and
last pages. Full MD5 checks of the module are expensive; partial
checks eliminate overhead and still catch all normal module update
events. Full MD5 checks of the code cache file incur acceptable
overhead.

first and last pages of the module, which will catch any update pro-
duced with a standard linker (but may miss a manual modification
using a hex editor that does not update any of the header fields).

In addition, a persisted cache should be checked for self-
consistency and completeness to guard against disk corruption or
other errors. To minimize instances of incomplete files, when we
produce a file we first create it as a temporary file. Only once the
data is fully written and the disk cache flushed do we rename the
temporary file to the official name. We also store and check an MD5
of the persisted file. Checking the entire file’s MD5 incurs less than
5% overhead (Figure 1), which is acceptable.

The typical usage model of a code caching tool is to use it to
control a process for its whole lifetime, where the tool can pro-
cess each library as it is loaded, prior to any potential modification
in memory. If instead a dynamic instrumentation system attaches
to a process after process initialization, a full text section check-
sum comparison should be done to detect modifications of the in-
memory image. This check should, however, allow legitimate li-
brary modifications performed by the loader for rebasing and re-
binding.

4. Implementation
We implemented our process-shared and persistent code caches
in the DynamoRIO [5] native-to-native dynamic instrumentation
system. It operates in-process and executes each target application
out of a code cache composed of blocks of single-entry, multiple-
exit code sequences. DynamoRIO supports profiling and building
long blocks of frequently executed code called traces, but this
paper focuses on persisting the primary code cache, consisting of
the application’s dynamic basic blocks. Maintaining trace building
support within persistent caches via trace head link control and
using delayed trace building are beyond the scope of this paper.

This section discusses the changes and additions we had to make
to DynamoRIO to support sharing and persisting its code cache.
Most of the issues apply equally to process-shared or persisted code

caches, so solving for one goes a long way toward supporting the
other.

4.1 Data Structures
DynamoRIO provides fine-grained control over its code caches in
order to support both consistency and capacity [4]. In particular, it
allows unlinking (removing all incoming and outgoing jumps) and
deletion of individual blocks, as well as an adaptive-region-sized
cache consistency invalidation granularity. To implement such fea-
tures it utilizes several types of data structures: one for each block;
one for each exit from each block; one for each additional mem-
ory region that a block covers beyond its starting address, to ensure
that it is invalidated on a consistency event; a list of incoming direct
links to each block; and a backpointer from each code cache slot to
that block’s corresponding data structure.

In order to maintain the same set of data structures in a process-
shared code cache, we face two challenges. The first is separat-
ing the read-only structures from the writable and placing them
on different pages. As discussed in Section 2.3, we decided not
to support writable shared memory due to its complexities, and
thus we only consider sharing data structures on read-only pages.
The second challenge is converting pointers to absolute addresses
into relocatable values. This is required to support both applica-
tion modules and code caches occupying different addresses in dif-
ferent processes. Relocated libraries are more and more frequent
in modern operating systems supporting address-space randomiza-
tion; and guaranteeing that the same address is available when load-
ing a shared code cache cannot always be done.

Solving the two challenges carries secondary advantages as
well: the fewer writable pages in the runtime system, the fewer
opportunities for malicious or inadvertent writes to interfere with
proper execution (our self-protection goal); and, if data structures
are eliminated to avoid pointers and writable pages, memory is
saved, further contributing to scalability.

Our solution was to create an entirely separate scheme of code
cache management that operates on a coarse granularity (larger
than a block of code), as opposed to the pre-existing fine-grained
(per-block control) scheme. Our coarse-grain cache has no per-
block data structures at all, other than an entry in a hashtable
identifying the code cache entry point corresponding to the original
application address. That hashtable value is an offset from the code
cache start, rather than an absolute address. In order to achieve this
minimalist design we gave up some of the power of the fine-grained
approach: individual deletion is not supported; individual unlinking
is only supported for external links (Section 4.3); blocks are not
allowed to cross memory regions (they are split); and iterating over
the code cache is much more expensive, but is not needed for cache
management as the entire code cache for a particular module is
treated as one unit that must be deleted all at once.

As finer-grained code cache deletion is needed for cache
consistency-intensive applications (those with dynamically-
generated or modified code) [4], we support switching from
a coarse-grained code cache to a fine-grained cache for any
particular module if it experiences numerous consistency events.
We also support particular blocks inside a module that is primarily
coarse-grained to be fine-grained; we use this power of adaptive
and side-by-side granularity to ignore complexities that would
make our coarse-grained strategy more difficult to achieve, allow-
ing the fine-grained management to handle all of the corner cases.
While this corner-case code will not be persisted or shared, the
majority of code executed by a typical application is unchanging
code residing in libraries; all of that code is coarse-grained and
thus shareable and persistable in our design.



4.2 Code Transformations
In addition to changing our data structures, to support sharing
and persistence we also had to modify some code transformations
we normally applied. These changes only affect coarse-grain code
caches: our fine-grain caches remain unchanged. They primarily
involve local optimizations on the application code as it is copied
into the code cache.

As each module’s coarse-grain cache is treated as a single unit,
we cannot elide direct unconditional jumps or calls that target sep-
arate non-coarse memory regions (such jumps are often removed
by code caching systems as an optimization). Inter-module direct
transfers do not normally happen natively but are enabled in our
system by an optimization converting indirect calls through an im-
port table into direct calls. Even intra-module elision is problem-
atic: if a module contains a sub-region of code that has been writ-
ten to by the application and thus been converted to fine-grained,
we must keep the remaining coarse-grain code separated.

We would like our persisted code caches to be not only
execution-independent but microarchitecture-independent, to al-
low for sharing of persisted caches across network file systems.
Our system uses the underlying cache line size in two different
ways: for correctness and for optimizations. For correctness, on
IA-32 we must ensure that any data or code that is written with-
out high-level synchronization must not cross cache lines. We link
and unlink blocks in the code cache by writing to the four-byte
operand of each jump instruction; when we emit each block into
the cache we tweak the start alignment of the block and/or insert
padding with nop instructions to ensure that those operands do not
cross cache lines. We also arrange performance-critical routines
like our indirect branch lookup routine and performance-critical
data like our scratch space to be cache-line aligned. To produce
a microarchitecture-independent persisted cache, we need to align
for correctness assuming the smallest cache line size we support,
but optimize assuming the largest. We store the cache line size in
the persisted cache header and only use a cache if the current size
lies in the range supported by that cache.

Our scratch space is accessed through segment offsets. We at-
tempt to obtain the same offset in every process, but it is not guar-
anteed to be constant. We store the offset in the persisted cache
header and require it to match the current offset in order to use the
cache.

Finally, transformations of application call instructions result in
absolute addresses in the code cache, which are problematic for
module relocation, as discussed in Section 4.4.

4.3 Linking
This section describes details of how we link components of our
persisted code caches together. Our coarse-grain code caches are
built incrementally, in application execution order. When we decide
to persist we have an opportunity to improve the layout of the
code. We perform a freezing step prior to persisting to disk. During
freezing we copy each block’s successor (fall-through target) to
the slot immediately after the block, in order to elide the jump
instruction linking the two. This shrinks the code cache by about
ten percent. We also eliminate any exit stub trampolines (which we
use in un-frozen coarse units for more flexible linking) linking two
blocks and use a direct jump between them. We are able to hardcode
these jumps directly into our read-only frozen cache because we
have given up the ability to unlink individual blocks, as discussed
above.

Any exits from the frozen cache whose targets are not present
must use exit stub trampolines. These stubs are kept separate from
the code cache, both because they are writable and to keep the
code cache more compact. A block targeting a stub reaches it via
a hardcoded jump that never changes. If the block is later linked

when its target materializes (as a non-frozen coarse-grain block,
a fine-grain block, or a frozen coarse-grain block in a separate
persisted module) the link will be routed through the stub. This
is in contrast to fine-grained blocks, which can directly link to
newly realized targets, as they are writable (and there are no jump
reachability limitations on IA-32).

A link between persisted modules is routed through a stub at
the source module, but directly targets the code cache entry point
at the target module. An incoming link data structure (one list for
each module) tracks these incoming jumps, enabling unlinking if
one or the other of the modules is unloaded or invalidated.

A persisted module’s exit stubs are kept read-only and made
writable each time an exit from the code cache is linked to a new
block, whether in another persisted module (which is rare: typically
indirect transfers are used between modules) or in the same module
but not part of the persistent cache. In steady state, once all code has
been persisted, the stubs are never made writable.

Achieving efficient read-only stubs requires persisting as much
of a module’s code as possible, to minimize external links from
code that is persisted. One common complication is a module with
its import address table in the middle of two adjacent text sections,
and on the same page as code. This table is normally read-only, but
it is written by the loader during rebinding. We special-case this
table writing to avoid converting any of the code to fine-grained
mode, which is not persistable.

The target of a stub that exits the code cache, as well as an
exit from a block ending in an indirect branch, are routed through
special jump trampolines located adjacent to the frozen code cache.
This indirection allows hardcoded jumps from the code cache to
remain read-only. At load time these indirection trampolines are
written just once to point at the appropriate runtime routines.

As described in Section 3.2, our code caches are shared in a
two-level hierarchy: those produced by the trusted computing base
(TCB) and those produced by the current user. Only code not
present in the TCB cache will be found in a user cache. Exit stubs
from the user cache whose targets exist in the TCB cache will be
linked directly to the TCB cache at load time. As the user cache
depends on a particular version of the TCB cache, it stores that
version information in its header. If the TCB cache is updated, any
code in the user cache that is now redundant should be removed (or
it could simply be thrown out and the user cache re-persisted).

4.4 Relocation
One form of application dynamism that complicates persisted code
caches is runtime code generation and modification, which we han-
dle by reverting to our fine-grain code cache, as discussed in Sec-
tion 4.1. Another form is library relocation, which is becoming
more prevalent as operating systems employ address space layer
randomization (ASLR) for security reasons. There are two chal-
lenges of relocation: relocating application code and relocating
non-application instructions inserted by the code caching system.

In order to be successfully relocated natively, application mod-
ules must either be position-independent or contain relocation
records for load-time re-basing. If the application code is position-
independent, no additional work need be done by a native-to-native
code caching system for those application instructions that are
copied verbatim into its code cache. Unfortunately, IA-32 Windows
libraries are not position independent and instead contain relocation
records. A code caching system must use those records to re-base
its code cache whenever a library is loaded at a different address.
The re-basing process ruins sharing by writing to many of the code
pages and making them process-private via copy-on-write. How-
ever, the native modules suffer from the same lack of sharing, so
scalability versus native execution is not adversely affected.
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Figure 2. Our persistent code cache layout, indicating the memory
attributes of each section. The indirection pads are written once at
load time but are read-only afterward, while the inter-module link
stubs are kept read-only but made writable each time an exit from
the code cache is linked to a new block.

In addition to relocating the application instructions, any abso-
lute application addresses stored in data structures must be updated.
To avoid such updates, we do not store any absolute addresses: as
explained in Section 4.1, we store offsets from the module base in
our hashtable.

The second challenge is in relocating translated and inserted
instructions that contain absolute addresses (an alternative is to
convert the translation into position-independent code, which is
not always easy to do efficiently). The most common instance is
the translation of a call instruction into a push immediate
followed by a jmp instruction. The immediate value is an absolute
application address that must be relocated. Another instance is a
jump out of the code cache to perform an indirect branch lookup
or to exit the cache back to the runtime system proper. On IA-32,
near jumps are pc-relative, making their targets dependent on the
instruction location. As described in Section 4.3, we use indirection
to keep each block and stub jump unchanging, leaving only the
central jump trampolines to update at load time.

One final instance of absolute addresses is scratch space when
it is not located in a register (or on the stack, though that is not
transparent): an absolute address or a segment offset. Our solution
is described in Section 4.2.

Relocation also complicates persisted cache accumulation. One
approach is to consider the first persisted code to specify the canon-
ical module base, with all later code additions being relocated prior
to appending to the persisted file.

4.5 Cache Layout
Figure 2 shows the layout of our persisted caches. We chose
not to use a native executable image format for simplicity. Our
header contains version information both for the application mod-
ule source of the code cache and for the runtime system that pro-
duced the cache, along with a section directory. Checksums are
stored for consistency checks (Section 3.3). The hashtable of en-
try points identifies which blocks of application code are present
in the code cache, while the relocation data is used when the mod-
ule is loaded at other than the address at which it was persisted
(Section 4.4). The two temporarily-writable sections, used for indi-
rection and linking, were described in Section 4.3.

The cache layout was designed to be as position-independent
as possible, with internal links within and among sections but all
external links isolated to the two writable sections. This allows

for maximum sharing among processes by keeping as much of the
image read-only as possible.

4.6 Instrumentation
Dynamic instrumentation engines support building custom tools
that insert instrumentation into the code cache. Persistent and
shared code caches introduce two new problems: whether instru-
mentation should be preserved when persisting, and how instru-
mentation should be applied when using a persisted cache.

Inter-execution or inter-application re-use of instrumentation
depends on the same tool being re-applied. Therefore the persis-
tent cache header must indicate whether any instrumentation is
present in the code cache, and if so, identify the tool and its ver-
sion. The namespace of persisted code caches should include the
tool identifier to support multiple simultaneous code caches for
the same module but with different instrumentation. Another pro-
cess (including a later instance of the same application) will only
load an instrumented cache if the tool matches. As the typical tool
usage model is to apply the same user-defined tool systemwide,
rather than using a disparate set of tools simultaneously, tying
the persisted files to the particular tool in use should work well.
Tools that employ dynamically varying instrumentation will want
to specify that their instrumentation should not be preserved. Fi-
nally, each tool must provide relocation information, or produce
position-independent code.

With the scheme above, when a tool is executed for the first
time, no persisted caches will be loaded because of a tool mismatch
(the empty tool versus the present tool results in no match for
an uninstrumented cache). An alternative is to change the model
of inserting instrumentation and allow modification of persisted
caches. Instead of changing code as it is copied into the cache, the
tool would instead insert trampolines into the code cache. This is
similar to the instrumentation process when modifying application
code directly, without some of the pitfalls: since the code cache
consists of dynamic basic blocks, all entry points are known, and
each block can be padded to ensure that jump instructions can
be inserted safely. For tools that do not apply systematic code
translations and insert only a few calls to instrumentation routines,
this model could work well and maintain sharing of most pages of
the code cache.

5. Evaluation
This section presents objective evaluation of our implementation
of process-shared and persistent code caches. We implemented the
design described in this paper in DynamoRIO [5], an industrial-
strength dynamic binary translation system targeting IA-32. The
boot numbers given here are for a Lenovo desktop with a Core 2
Duo 2.2GHz processor running Windows XP with 2GB of RAM,
while the desktop applications were run on a Dell Latitude D610
laptop with a Pentium M 2.2GHz processor running Windows XP
with 2GB of RAM.

5.1 Scalability
Our first scalability test focuses on applying our code caching
system on a systemwide basis (on every process on the system). We
measured memory usage during boot and logon to our machine: we
used auto-logon for automation and considered the machine fully
booted once it reached an idle state.

Figure 3 shows the peak committed memory beyond native us-
age for each of five different configurations: fine-grain, coarse-
grain without process-shared code caches, coarse-grain caches
shared among all processes, coarse-grain caches shared in the two-
level scheme proposed in this paper, and coarse-grain caches shared
only among each user but not between users. Every Windows ser-
vice and logon process was run under control of our code cache,
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Figure 3. Peak committed memory beyond native usage during
boot and logon, with 27 total processes executing from the code
cache. Native usage was 135 MB. We measured five different
configurations: fine-grain (without sharing), coarse-grain without
sharing, (coarse-grain) caches shared among all processes, caches
shared in the two-level scheme proposed in this paper, and caches
shared only among each of the four users but not between users.

with a total of 27 processes executed (including some running our
idle detection script) and 15 of those still running at idle time. These
processes execute as four different users.

Note that the coarse-grain code cache design alone, indepen-
dent of sharing, provides noticeable memory savings due to the
reduction in data structures. With sharing we have significant sav-
ings. Our two-level design approaches the memory savings of unre-
stricted sharing, reducing memory usage by two-thirds, while min-
imizing any sacrifice in security.

Figure 4 displays the code cache sizes relative to native module
sizes for the fifteen largest code caches from the caches shared
among all users (the configuration with the largest caches) in our
boot benchmark. We show the ratio considering only untranslated
code as well as the translated code cache size (our code cache has
an expansion ratio of about 70%, primarily from indirect branch
processing code). Even sharing among 27 processes, only a fraction
of the code in each module is executed: one-seventh on average.

Our second test encompasses running ten instances of a single
application simultaneously, for two large desktop applications: Mi-
crosoft Internet Explorer and Microsoft Excel. As Figure 5 shows,
inter-process sharing eliminates over 70% of the additional mem-
ory usage of the code caching system.

5.2 Performance
Our process-shared code cache design also supports persistent
code caches. Persistence improves performance of cold application
code: initialization sequences or execution of short-lived processes,
where there are limited opportunities for amortization of overhead.
Figure 6 shows the results on three benchmarks that start up and
immediately shut down each of three typical large desktop applica-
tions: Microsoft Internet Explorer, Microsoft Excel, and Microsoft
Word (we omitted Word from the ten-instances test as it is designed
to never start a second process). Our benchmarks were fully auto-
mated, using the macro capabilities of Excel and Word and using
Javascript with Internet Explorer in order to perform the shutdown
without user input.

Figure 7 shows the time breakdown of these benchmarks. When
not using persisted caches, the time copying blocks of code into

native
process−private
process−shared

  0 MB

  20 MB

  40 MB

  60 MB

  80 MB

  100 MB

  120 MB

  140 MB

  160 MB

IE x 10 Excel x 10

P
ag

ef
il

e 
u
sa

g
e

Figure 5. Pagefile usage of ten instances of Internet Explorer
6.0 and Excel 2000 processes executing simultaneously: natively,
without process-shared code caches, and with process-shared code
caches.

the code cache dominates execution time. Our persistent caches
remove most of that time, shrinking runtime by 60% to 70%.

Generation of code cache files is a rare event compared to their
use, making the performance of creating the files less important. If
starting from scratch and generating dozens of new files at once,
a delay of a few seconds can be measured, but that is a one-time
event as subsequent runs incur zero cost. Generation can be staged
to reduce the cost, but in our usage we have not felt that such action
is necessary.

6. Related Work
Software code caches are found in a variety of systems. Dynamic
translators use code caches to reduce translation overhead [10, 29,
40], while dynamic optimizers perform native-to-native translation
and optimization using runtime information not available to the
static compiler [3, 8]. Similarly, just-in-time (JIT) compilers trans-
late from high-level languages to machine code and cache the re-
sults for future execution [1, 2, 16, 19, 35]. Instruction set emu-
lators [11] and whole-system simulators [25, 38] use caching to
amortize emulation overhead. Software code caches are also cou-
pled with hardware support for hardware virtualization [6, 12, 37]
and instruction set compatibility [14, 15, 17, 21]. To avoid the
transparency and granularity limitations of inserting trampolines
directly into application code, recent runtime tool platforms are be-
ing built with software code caches [5, 24, 26, 31, 32].

Studies have shown the potential benefit from re-using code
caches across executions [18], which has been confirmed by at
least one persistent cache implementation [27, 28]. Persistence
across library re-loads but within a single execution has also been
shown to improve code cache performance [23]. Even systems
not utilizing full code caches can benefit from serialization of
instrumentation code [36]. None of this work has explored inter-
process sharing of code caches, which significantly affects the
design of persisted caches.

FX!32 [9], DEC’s system for IA-32 Windows migration to Al-
pha, combines an emulator with offline binary translation. Trans-
lated code is stored in native libraries and organized by module,
similarly to our design. Security is not a high priority, and as far as
we can tell a low-privilege application is allowed to produce trans-
lated code that would be used by a high-privilege application.
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Figure 4. Code cache sizes relative to native module sizes for the fifteen largest code caches from the caches shared among all users in
Figure 3, along with the average over all 206 modules. The original size is the code size prior to translation for placing into the code cache.
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Figure 6. Time to start up and shut down Internet Explorer 6.0, Excel 2000, and Word 2000, each natively, without persistent code caches,
and with persistent code caches.
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Figure 7. The breakdown of time spent when starting up and shutting down Internet Explorer 6.0, Excel 2000, and Word 2000. Persisting
removes nearly all of the code cache creation time.

Transitive [29] reportedly employs process-shared code caches
that are not persistent due to security concerns, but no published
details are available.

Systems that operate below the operating system have the option
of sharing code caches at the physical page level. However, it
may be more practical to use virtual address tagging, as sharing
across different address spaces (instead of isolating by flushing or
using ASIDs) brings its own complications and costs, especially for
software systems on current hardware [7].

Language virtual machines typically do not persist their JIT-
compiled object code. Sharing of bytecode and other read-only
information, as well as sharing of JIT-compiled code, across Java
virtual machines running in separate processes has been evaluated
in the absence of persistence [13].

The .NET pre-compiler NGen does produce native code that is
persisted and shared across processes [20]. As .NET code units
often have numerous dependencies, .NET 2.0 introduces a back-
ground service that tracks static dependencies and re-compiles
NGen images when their dependencies change. NGen will only
share code that has been cryptographically signed. If the NGen im-
age for the code was installed into a secure directory, at load time
no verification is performed; if the image is stored elsewhere, the
.NET loader verifies the signature, which involves examining most
of the pages in the image and usually eliminates any performance
gains from persistence. A potential privilege escalation vector ex-
ists, then, if there is a bug in the installation tool that verifies signa-
tures prior to inserting into the secure directory.

Static instrumentation tools such as ATOM [33] and Morph [39]
for Alpha, Vulcan [34] and Etch [30] for IA-32, and EEL [22] for
SPARC all produce persistent versions of instrumented binaries.
Their disadvantages include difficulty statically discovering code as
well as code expansion due to applying instrumentation to all code
rather than only executed code, though Etch does attempt to address
these issues by using a profiling run. HDTrans [32] evaluated static
pre-translation to prime runtime code caches, but found the cost of
relocation to be prohibitive.

7. Conclusions
The goal of this paper is to facilitate deployment of dynamic code
caching tools on many processes simultaneously by improving
scalability. We present a model for sharing software code caches
among multiple processes in a secure manner. We describe the se-
curity design space and show how to prevent privilege escalation
while still allowing significant sharing. Our shared code caches em-
ploy read-only code and data structures to reduce the risk of mali-
cious or inadvertent data corruption. Our design also supports code
cache persistence for improved performance during initialization
or execution of short-lived processes, areas where code caches tra-
ditionally have poor performance due to limited opportunities for
amortization of overhead.

We have implemented our design in the DynamoRIO industrial-
strength dynamic instrumentation engine, and we show that persis-
tent code caches achieve a 60% to 70% reduction in startup time.
Our process-shared code caches increase scalability by reducing
memory usage by two-thirds.
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