
Thread-Shared Software Code Caches

Derek Bruening, Vladimir Kiriansky, Timothy Garnett, and Sanjeev Banerji

Determina, Inc.
{derek,vladimir,tim,sanjeev}@determina.com

Abstract

Software code caches are increasingly being used

to amortize the runtime overhead of dynamic optimiz-

ers, simulators, emulators, dynamic translators, dynamic

compilers, and other tools. Despite the now-widespread

use of code caches, techniques for efficiently sharing

them across multiple threads have not been fully ex-

plored. Some systems simply do not support threads,

while others resort to thread-private code caches. Al-

though thread-private caches are much simpler to man-

age, synchronize, and provide scratch space for, they sim-

ply do not scale when applied to many-threaded pro-

grams. Thread-shared code caches are needed to target

server applications, which employ hundreds of worker

threads all performing similar tasks. Yet, those sys-

tems that do share their code caches often have brute-

force, inefficient solutions to the challenges of concur-

rent code cache access: a single global lock on run-

time system code and suspension of all threads for any

cache management action. This limits the possibilities

for cache design and has performance problems with

applications that require frequent cache invalidations to

maintain cache consistency.

In this paper, we discuss the design choices when

building thread-shared code caches and enumerate the

difficulties of thread-local storage, synchronization, trace

building, in-cache lookup tables, and cache eviction. We

present efficient solutions to these problems that both

scale well and do not require thread suspension. We eval-

uate our results in DynamoRIO, an industrial-strength

dynamic binary translation system, on real-world server

applications. On these applications our thread-shared

caches use an order of magnitude less memory and im-

prove throughput by up to four times compared to thread-

private caches.

1 Introduction

Dynamic tools and other systems that operate at run-
time often employ software code caches to store fre-

quently executed sequences of translated or instrumented

code for use on subsequent executions, thereby avoid-

ing the overhead of re-translation. While caches can im-

prove performance, their size must be carefully managed
to avoid occupying too much memory and ultimately de-

grading performance. They also must be kept consistent

with their corresponding original application code. Both
tasks are complicated by the presence of multiple threads.

Any code caching system that targets applications
with multiple threads faces a choice: increase memory

usage by using thread-private caches, or increase the

complexity of cache management by sharing the code
cache. Some systems opt to not support multiple threads,

in particular simulators and emulators that model a sin-

gle processor [14, 15, 19, 28, 40]. Those that support
multiple threads but choose thread-private caches enjoy

straightforward and more efficient cache management,

synchronization, and scratch space, and work well on ap-
plications with little code sharing among threads, such

as interactive desktop programs [6, 26]. However, as

we will show in Section 3, modern server applications
have significant amounts of sharing among threads, and

thread-private caches use prohibitive amounts of memory
resulting in poor performance on these programs.

Existing systems that use thread-shared caches typ-

ically solve the thorny problem of evicting code from
the cache via a brute-force solution: suspend all other

threads or otherwise force them out of the cache imme-

diately. This solution requires that cache management be
kept to a minimum, which may not be practical for ap-

plications that incur many cache invalidations. Suspen-

sion also does not scale well on multiprocessor machines
where it prevents concurrent execution. These shortcom-

ings limit the applicability of such systems in production

environments.
One contribution of this paper is a discussion of the

design space and the key challenges of building thread-
shared code caches. We analyze the need for sharing and

the impact of thread-shared caches, which on server ap-

plications use an order of magnitude less memory and
achieve up to four times better throughput compared to

thread-private caches on some workloads (Section 3). We

discuss the choices of what to share (Section 4) and how
to provide scratch space (Section 5). Further contribu-

tions lie in specific solutions to various problems: syn-

chronization (Section 6), trace building (Section 7), in-



cache indirect branch lookup tables (Section 8), and code

cache eviction (Section 9).

2 Experimental Methodology

We evaluate our solutions in DynamoRIO [6], an

industrial-strength dynamic binary translation system,
operating on a benchmark suite targeting web and

database servers. DynamoRIO is a native-to-native sys-

tem that executes a target application process out of a
basic block code cache. It also builds traces out of fre-

quently executed sequences of basic blocks and places

them in a trace code cache. Trace building is accom-
plished by profiling certain basic blocks marked as trace

heads, which include loop heads and exits from existing

traces. We refer to both traces and basic blocks with the
generic term block. Other than trace building (which is

described further in Section 7), the discussions in this pa-

per are relevant to any software code caching system that
deals with multiple threads and are not limited to a sys-

tem with this particular basic-block-and-trace setup.

Our server benchmarks, listed in Table 1, target Mi-
crosoft Internet Information Services (IIS) 6.0 and Mi-

crosoft SQL Server 2000 SP3a, using default configura-
tions except as explicitly noted. Both applications were

run on the same Windows 2003 Advanced Server Dell

PowerEdge 6600 machine equipped with 4 2.2GHz Xeon
processors with hyperthreading enabled (resulting in 8

logical processors), 12K µops trace cache, 8KB L1 data

cache, 512KB L2 cache, 2MB L3 cache, and 4GB RAM.
The server was targeted over a 1Gbps Ethernet connec-

tion by a Windows XP SP1 2.2GHz Pentium 4 Dell Di-

mension 2400 client machine with 1GB RAM.
Our first two benchmarks use the Apache

HTTP server benchmarking tool ab versus

IIS 6.0 in 5.0 compatibility mode. ab was
run with 60 simultaneous connections and

120,000 iterations, targeting the IIS SDK sample
iissamples/sdk/asp/docs/ColorPicker.asp,

which results in code running in inetinfo.exe when

IIS is in low isolation mode (ab low) and in both
inetinfo.exe and dllhost.exe when IIS is in

medium isolation mode (ab med). Our second pair of

benchmarks uses the Guestbook ASP application [38],
again with IIS in either low (guest low) or medium (guest

med) isolation mode, but also exercising SQL Server

for dynamic content. For each benchmark we executed
the workload twice (each runs for fifteen minutes)

and reported the average throughput (Kb/s for ab and

transaction count for guestbook) from the two runs. Our
benchmarks are all CPU-bound.

3 Sharing Prevalence and Impact

A major design decision for any code caching system
that supports multiple application threads is whether to

use thread-shared or thread-private code caches. Thread-

shared caches reflect the original application code, which
lives in a thread-shared address space. However, thread-

private caches are much simpler to manage for con-

sistency and capacity, require no synchronization for
most operations, can use absolute addresses for thread-

local scratch space (Section 5), avoid indirection in

performance-critical lookup table accesses (Section 8),
and support thread-specific specialization for optimiza-

tion or instrumentation.
To illustrate the challenges of thread-shared caches,

consider the seemingly simple task of removing a block

of code from the thread-shared code cache. It cannot be
removed until it is known that no threads are executing

inside that block. Yet, instrumentation of every block is

too expensive, as is suspending every single thread to dis-
cover where it is every time a block needs to be removed

(which may be frequent for purposes of cache consis-

tency: Section 9.2). Thread-shared caches require more
complex and sophisticated algorithms.

Thread-private caches do have an obvious and sig-

nificant disadvantage: duplication of code in multiple
threads’ caches. The scope of this depends on the amount

of code shared among threads. Desktop applications have
been shown to share little code [6, 26], with a primary

thread performing most of the work and the other threads

executing disparate tasks. However, server applications
deliberately spawn threads to perform identical jobs. Ta-

ble 2 shows the amount of sharing among both basic

blocks and traces for our benchmarks. Over one-half
of basic blocks and two-thirds of traces are shared by at

least two threads, and typically by tens of threads. This

is strikingly different from desktop applications, which
share less than ten percent of their blocks [5].

Although significant research attention has been

given to exploring highly scalable event-driven architec-
tures [25, 39], commercial server applications are mostly

based on multi-threaded architectures. The concurrency

model of our target server applications [30, 31] is based
on pools of worker threads that handle connections and

requests. Heuristics are used to control scalability by dy-
namic sizing of the number of threads: reacting to system

load, expanding for bursty workloads, and shrinking after

periods of inactivity, all within configurable minimums
and maximums. SQL Server also supports lightweight

pooling based on fibers, user-mode-scheduled threads of

execution that reduce context switching overheads, with
real (kernel-mode-scheduled) threads used only to mi-

grate across processors. The best vendor-reported TPC-

C [37] benchmark scores for SQL Server are produced in
fiber mode, and DynamoRIO seamlessly supports fibers.

Yet lightweight pooling is not enabled by default and is

generally not recommended [21], due to incompatibili-
ties with various extensions, e.g., incorrect expectations

for thread local storage. In our goal to provide a transpar-
ent platform, we strive to provide minimal performance



Benchmark Server Processes

ab low IIS low isolation inetinfo.exe

ab med IIS medium isolation inetinfo.exe, dllhost.exe

guest low IIS low isolation, SQL Server 2000 inetinfo.exe, sqlservr.exe

guest med IIS medium isolation, SQL Server 2000 inetinfo.exe, dllhost.exe, sqlservr.exe

Table 1. Our database and web server benchmark suite and the processes that make up each
target server application. DynamoRIO executes separately inside each process.

Threads Basic blocks Traces

threads threads
Benchmark Process ever peak total shared per block total shared per block

ab low inetinfo.exe 138 127 100647 50% 22 7560 70% 27

ab med inetinfo.exe 170 159 89688 47% 29 6185 68% 40

dllhost.exe 175 162 51309 58% 53 4211 85% 71

guest low inetinfo.exe 224 203 126654 58% 31 13865 79% 26

sqlservr.exe 153 140 96893 51% 26 6980 74% 17

guest med inetinfo.exe 192 141 95660 50% 16 7229 66% 11

dllhost.exe 221 165 75772 68% 48 9929 84% 30

sqlservr.exe 157 144 97081 54% 29 6907 62% 18

average 178 155 91713 54% 31 7858 73% 30

Table 2. Fragment sharing across threads. For each process in each benchmark, we show the
number of threads ever created, the peak number of simultaneously-live threads, and for each
of basic blocks and traces: the total count, the percentage executed by more than one thread,
and the average number of threads executing each shared block.

degradation not only for applications tuned for optimal

native execution workloads but also for sub-optimally de-
signed or configured applications. We must also not per-

turb self-tuning heuristics. Our benchmarks therefore use

the default thread worker model for SQL Server and de-
fault thread pool parameters for IIS.

We evaluated the performance and memory usage of
DynamoRIO using both thread-private and thread-shared

caches, implementing the designs described in the fol-

lowing sections. The results show that thread-shared
caches are a clear winner for server applications, and

the average throughput reduction compared to native on

these CPU-bound benchmarks is now only 11%. Fig-
ure 1 gives the throughput of DynamoRIO using shared

caches versus private caches, resulting in an average im-

provement of 1.9x. Shared caches achieve up to four
times the throughput of private caches, due to reduced

pressure in the hardware instruction cache, instruction

TLB, branch predictors, branch target buffer, and other
address-indexed structures. Since server threads are of-

ten executing for a short amount of time, and when
blocked or pre-empted may be replaced by a possibly re-

lated thread, frequent context switching is a lot less ex-

pensive with shared caches. Even more dramatic is the
memory usage, shown in Figure 2. The memory expan-

sion from thread-private code caches quickly becomes

  0x

  0.5x

  1x

  1.5x

  2x

  2.5x

  3x

  3.5x

  4x

guest_medguest_lowab_medab_low

Th
ro

ug
hp

ut
 o

f t
hr

ea
d−

sh
ar

ed
 v

er
su

s t
hr

ea
d−

pr
iv

at
e

Figure 1. Throughput achieved by Dy-
namoRIO using thread-shared caches ver-
sus thread-private caches

egregious when the thread count numbers in the hun-

dreds. Thread-shared code caches bring memory usage
down and allow applications that benefit from using all

available memory to avoid scalability limits.



Private caches
Shared caches

  0x

  10x

  20x

  30x

  40x

  50x

  60x

sqlservrdllhostinetinfosqlservrinetinfodllhostinetinfoinetinfo

W
or

ki
ng

 se
t s

iz
e 

re
la

tiv
e 

to
 n

at
iv

e

ab low \  ab med  / \  guest low  / \     guest med     /
Figure 2. Memory usage comparison of thread-private and thread-shared caches, in terms of
peak working set size (as reported by the operating system) versus native usage. The processes
that make up each benchmark are shown individually.

4 Sharing Choices

Each component of a runtime system can be sep-

arately made thread-shared or thread-private: basic

blocks, traces, trace building markers and profiling data,
and indirect branch target lookup tables. Mixtures can

also be used. For example, even when using thread-
shared basic blocks in general, DynamoRIO keeps basic

blocks that correspond to observed self-modifying ap-

plication code in a thread-private cache to allow quick
synchronization-free deletion when modifications are de-

tected.

In addition to the code cache, every runtime system
maintains associated data structures for managing the

cache and its blocks. Runtime system heap management

parallels cache management, with thread-private requir-
ing no synchronization and thread-shared requiring as-

surance that no thread holds a pointer to a structure be-

fore it can be freed. Whether pointers to private struc-
tures are allowed inside shared structures, or vice versa,

is another source of complexity. DynamoRIO avoids
such arrangements.

With an all-shared or an all-private code cache, links

connecting blocks in the cache have no unusual restric-
tions. However, when mixing shared and private, links

between the two require care. Private code can target

shared code with no extra cost, but shared code must dis-
patch by thread or use indirection through a thread-local

pointer to reach the private code for the executing thread.

If any type of cross-cache links are allowed, data struc-

ture management becomes more complicated. If lists of

incoming links are used for proactive linking and fast un-
linking [6], the system can end up with pointers to shared

data embedded in private data structures. As we men-
tioned above, DynamoRIO avoids this mixture and thus

does not allow cross-cache links. This is not problematic

due to our rare use of thread-private blocks, which we
only use for cases such as self-modifying code that are

not often on critical performance paths.

5 Thread-Local Storage

Any runtime system requires scratch space to be avail-

able at arbitrary points during application execution, in

order to operate while preserving application state. The
simplest, most efficient, and most transparent form of

scratch space access is absolute addressing, as it does not

affect application register or stack usage. This addressing
mode is supported by IA-32, DynamoRIO’s target archi-

tecture. However, absolute addressing only works well
with thread-private caches. For thread-shared code we

need thread-private scratch space accessible via a shared

instruction. Our choices are using the stack, which is
neither reliable nor transparent; stealing a register, which

incurs a noticeable performance hit on the register-poor

IA-32 architecture; and using a segment, which is not
available on all platforms but is on IA-32.

Segments are used by both Windows and recently



Linux [17] to provide thread-local storage space. We can

either use the same space and try not to interfere with the
application’s slots, or we can create our own segment and

steal a segment register. The offset of our scratch space

from the segment base must be a known constant. Dy-
namoRIO uses Windows-provided thread-local storage.

Windows provides 64 storage slots within each thread’s

segment, with an additional 1024 entries added in Win-
dows 2000 but which require an extra indirection step to

access and so cannot be used as primary scratch space.
DynamoRIO abides by the storage’s allocation scheme

to prevent conflicts with the application. To avoid indi-

rection and thus improve performance we use multiple
slots, and transparency problems are still possible when

we compete for this limited resource with applications

with hard requirements for direct access.
When mixing thread-shared and thread-private code,

we first tried to use segment space for the shared code

and absolute addressing pointing at a different location
for the private code. In an alternative experimental con-

figuration with shared basic blocks and private traces, the

portion of a trace’s code coming from its constituent ba-
sic blocks used the segment space while the newly gen-

erated part of the trace used the absolute space. This
mix increased the data cache footprint enough to cause

a noticeable performance hit. Absolute addressing can

be mixed with segment addressing, but they should both
point at the same linear addresses for best performance.

6 Synchronization

Sharing blocks across threads requires synchronized

access to data structures and code cache modifications.
Our first version of sharing used a single monolithic lock

for all runtime system code, where only one thread could

be out of the code cache at a time. The contention on
this lock was high and performance suffered, as shown

in Figure 3. Most of this overhead is only incurred at
startup and mostly impacts short workloads, while longer

continuous workloads spend less time in the runtime sys-

tem and consequently are less affected in steady state.
If thread-private data structures need to be populated,

bursty workloads may also see some impact whenever

thread pools shrink and expand. Yet, only a slightly
finer-grained approach is required to achieve good per-

formance across varied workloads. We use two main

locks: a basic block building lock that is held across look-
ing up, building, and adding a new basic block; and a

change linking lock that is held across any changes to the

link state of a block, including replacing any placeholder
containing state for the new block to assume (such as per-

sistent basic block profiling data that preserve execution
counts across block deletion [6, p. 49]). If private blocks

exist and any form of cross-cache linking is allowed, then

the change linking lock must be held during private block
linking as well. Additionally, if the trace headness at-

  0%

  1%

  2%

  3%

  4%

  5%

  6%

guest_medguest_lowab_medab_low

Th
ro

ug
hp

ut
 re

du
ct

io
n 

of
 c

oa
rs

e 
ve

rs
us

 fi
ne

 sy
nc

h.

Figure 3. The performance impact of
coarse-grained synchronization that em-
ploys a single monolithic lock around all
runtime system code, versus our scheme
of slightly finer-grained locks for basic
block building and link modification.

Reduction in

Benchmark Process contention instances

ab low inetinfo.exe 53.1%

ab med inetinfo.exe 85.0%
dllhost.exe 53.4%

guest low inetinfo.exe 67.0%

sqlservr.exe 70.3%

guest med inetinfo.exe 80.3%

dllhost.exe 58.8%

sqlservr.exe 75.5%

average 67.9%

Table 3. The reduction in lock contention
instances when using our finer-grained
locks for basic block building and link
modification compared to using a coarse-
grained monolithic lock.

tribute of each basic block is shared (see Section 7), the

lock is required during initial linking of a new private

block (when trace headness is discovered). As Table 3
shows, the contention on these two finer-grained locks is

substantially lower than with the monolithic approach.

In addition to these high-level operation locks, each
global data structure requires its own lock. These include

block lookup hashtables, tables mapping code cache ad-

dresses to application addresses, and lists of available
slots in the code cache. These locks must be efficient

to avoid contention. Using spin locks or thread yields is
not sufficient, as block lookups are on a relatively critical

path. We found that only with fast read-write locks where

a reader incurs very little overhead and all contention is
handled by operating system-supported waits and notifies



could we eliminate all performance impact of our locks.

Since DynamoRIO operates on multithreaded appli-
cations it must be careful about interactions of its own

synchronization with that of the application. A thread

in the code cache should be executing completely in the
application’s context and should not hinder execution of

runtime system code. Our invariant is that no runtime

system lock can be held while in the code cache. This
greatly simplifies both the safe points [6, p. 116] neces-

sary for supporting application threads suspending each
other and the synchronization needed for code cache con-

sistency [5]. However, this limits the choices for trace

building synchronization, as discussed in Section 7.

7 Trace Building

The mechanisms of trace building in a shared code

cache require more changes and decisions than simply

applying locks at the appropriate points in a private trace
building scheme. This section discusses building Next

Executing Tail (NET) traces [18], which each begin from

a basic block called a trace head. Traditional NET trace
heads focus on loops by including targets of backward

branches as well as exits from existing traces [6]. Trace
heads are profiled, and as soon as a trace head’s execu-

tion counter exceeds a threshold value, the subsequent

sequence of basic blocks that is executed after the trace
head is concatenated together to become a new trace. In

this scheme there are several independent choices of what

to share and what remains thread-private: basic blocks,
trace headness (whether a basic block is considered a

trace head), trace head counters, and traces themselves.

Hybrid choices are also possible, where some traces are
private and some (perhaps those found to be common) are

promoted to shared traces, or the reverse where shared

traces are turned into thread-private traces for thread-
specific specialization.

While trace headness sharing is typically tied to ba-
sic block sharing, and trace head counter sharing is typ-

ically tied to sharing traces themselves, the connections

are not necessary. Having counters shared but traces pri-
vate could be desirable if trace-specific optimizations are

performed on the traces, or if shared thread-local stor-

age is expensive and private traces have a performance
advantage.

NET trace building involves executing basic blocks

one at a time, incrementally discovering the hot path dur-
ing the next execution after a trace head becomes hot.

This entails multiple trips in and out of the code cache.

Given our invariant of no locks while in the code cache
(Section 6), this rules out a giant trace building lock. In-

stead, we use thread-private temporary data structures to
build up traces and only synchronize at the point where

a trace is ready to be emitted into the code cache. To

prevent wasteful concurrent trace building work, we set a
flag on a shared trace head once trace building has started

Trace Ratio of
building races to

Benchmark Process races traces

ab low inetinfo.exe 4985 65.9%

ab med inetinfo.exe 1029 16.6%

dllhost.exe 2532 60.1%

guest low inetinfo.exe 7730 55.8%

sqlservr.exe 2886 41.3%

guest med inetinfo.exe 662 9.2%

dllhost.exe 6638 66.9%

sqlservr.exe 3572 51.7%

average 3754 45.9%

Table 4. Trace creations attempted while
another trace from the same trace head
was being created, and the ratio of these
races to the total number of traces built.

from that head. Another thread will not attempt to build a
trace from a flagged trace head but will instead continue

executing from existing blocks. This race is not uncom-

mon, as Table 4 shows. Without this flag, many duplicate
traces would be simultaneously built and wasted.

Each target block in the next executed tail must be un-

linked in order to return to the runtime system after exe-
cution and continue the process. Since we cannot hold a

lock while in the code cache, we cannot prevent the target

block from being re-linked by another trace in progress or
otherwise being modified. We solve this by again using

thread-private temporary structures, this time for the ba-
sic block itself. This also avoids disrupting other threads

by eliminating unlinking of shared blocks.

If both traces and basic blocks are shared, a trace head
is no longer needed once a shared trace has been built

from it. As block deletion is an involved operation in a

shared cache (Section 9.2), one option is to not delete the
head but instead shadow it. Shadowing makes the head

inaccessible by ensuring that the trace has precedence in

all lookup tables and by shifting the trace head’s links to
the trace. If the trace is later deleted, the links can be

shifted back to restore the head. However, as this does

waste space, DynamoRIO deletes a trace head using our
two-step lazy deletion (Section 9) as soon as its corre-

sponding trace is emitted.

8 In-Cache Lookup Tables

In a software code cache, indirect branches must be

dynamically resolved by looking up the corresponding

code cache address for a given application address. These
indirect branch lookup tables present more synchroniza-

tion complications than other runtime system data struc-

tures because they are accessed from the code cache and
are on the critical performance path. A runtime system’s



performance has been shown to be primarily limited by

its indirect branch performance [6], which is the only
aspect of code cache execution that differs significantly

from native execution.

As with the other components, lookup tables can be
thread-shared or thread-private. Even if all blocks are

shared, thread-private tables simplify table entry deletion

and table resizing, as described below. Private tables do
occupy more memory than shared, but they do not sig-

nificantly impact scalability the way thread-private basic
blocks and traces do. In our benchmarks, the total mem-

ory usage of thread-shared blocks is four times greater

than the memory usage from thread-private lookup ta-
bles. The main disadvantage of thread-private tables is

that the table of every thread must be traversed in order

to remove a shared block. There is also additional data
cache pressure.

Thread-shared tables require synchronization with

other threads in runtime system code to coordinate con-
current writes to the table as well as to make sequences of

reads and writes atomic. We use read-write locks to ac-

complish this. However, we can avoid the cost of a read
lock for the in-cache lookup if we make the key table op-

erations atomic with respect to reads from the cache. The
key operations are: adding a new target block; removing

a block; and resizing the table.

Adding a new block can be made atomic with respect
to table reads from the cache by first adding subsidiary

fields and only then using a single IA-32 atomic write to

the primary tag field to enable the new entry. Removing
entries is a little more difficult and depends on the type

of hashtable collision handling. We use an open-address

hashtable with linear probing [13], where shifting entries
on deletion produces shorter collision chains than using

a sentinel. However, shifting cannot be used without a

read lock in the cache. Our solution is to use a sen-
tinel that is not a hit but does not terminate the collision

chain, which can be written atomically to the tag field.

Atomic removal is required for thread-private as well as
thread-shared caches on cache consistency events (see

Section 9), as blocks must be invalidated in all threads’
caches by the thread processing the event. For thread-

private tables, the owning thread can clean up the sen-

tinel and perform deletion shifting on its own table when
back in runtime system code. For thread-shared tables,

we cannot do any shifting or replacement of a sentinel

unless we know all threads have exited the cache since
the sentinel’s insertion.

Resizing is the most difficult of the three operations.

As there is a large range in amount of code executed by
different applications, no single table size will provide

both small data cache footprint and small collision chains

— the table must be dynamically sized as the application
executes new code. Thread-private lookup tables can be

resized by their owner at any point. For thread-shared
tables, we point at the new table but do not free the old

table right away. A reference counting scheme is used to

lazily reclaim the memory.
After implementing both thread-private and thread-

shared lookup tables in DynamoRIO, we have observed

thread-private to be marginally faster, possibly due to
shared tables’ lack of sentinel replacement resulting in

longer collision chains. As future work we plan to

explore the effects of more sophisticated shared table
management. The numbers in this paper are from Dy-

namoRIO configured to use thread-private tables.
Lookup routines can also be either shared or pri-

vate. Shared routines must use indirection to access

their lookup tables (unless a hardcoded table size is used,
which does not scale well, or several registers are per-

manently stolen, which will have serious performance

problems on IA-32), another disadvantage of sharing.
DynamoRIO’s shared routines store table addresses and

lookup masks directly in thread-local storage (Section 5)

in order to avoid a second indirection step. The best gen-
eral approach may be a hybrid that uses thread-private

lookup routines and tables but switches to thread-shared

if the application turns out to use many threads with sig-
nificant sharing.

9 Code Cache Eviction

Code must be evicted from software code caches for
two reasons: cache consistency and cache capacity. This

section shows that while invalidating code by making it

unreachable is similar between thread-private and thread-
shared caches, actually freeing code is very different in

the thread-shared world.

9.1 Unlinking

Any software code cache must be kept consistent

with the application’s original code, which can change
due to code modification or de-allocation of memory.

These events are more frequent than one might expect

and include much more than rare self-modifying code:
unloading of shared libraries; rebasing of shared li-

braries by the loader; dynamically-generated code re-

using the same address, or nearby addresses (false shar-

ing) if the method of change detection is not granu-

lar enough — and dynamically-generated code includes

nested-function trampolines and other code sequences
not limited to just-in-time compilers; hook insertion,

which is frequent on Windows; and rebinding of jump
tables. All of these application changes must be handled

by invalidating the corresponding code in the code cache.

Our experience running commercial server software re-
vealed as a common source of bugs attempts to execute

from already unloaded libraries. Rather than data cor-

ruption these latent bugs more often result in execution
exceptions that are handled within the application, and

our platform has to faithfully reproduce those exceptions

for bug transparency.



The presence of multiple threads complicates cache

invalidation, even with thread-private caches (as stale
code could be present in every thread’s cache). Bru-

ening and Amarasinghe [5] present an algorithm for

non-precise flushing using a slightly relaxed consistency
model that is able to invalidate modified code in a lazy

two-step scheme that avoids the up-front cost of sus-

pending all threads on every invalidation event. (Self-
modifying code is handled differently [5], in a precise

fashion, which is one reason that DynamoRIO keeps self-
modifying blocks thread-private.) Non-precise flushing

assumes that the application uses synchronization be-

tween a thread modifying code and a thread executing
that code. A code cache system can then allow a thread

already inside a to-be-invalidated block to continue ex-

ecuting and only worry about preventing future execu-
tions. This results in a two-step scheme: one, making

all target blocks inaccessible, which must be done proac-

tively; and two, actually freeing the stale blocks, which
can be performed lazily. Here we extend that algorithm

and verify that the first step works with the addition of

our shared indirect branch table solutions from Section 8,
but the second step requires a novel scheme for freeing

memory, which we present in Section 9.2.
Methods for removing blocks from indirect branch

target tables atomically, concurrent with other threads’

access to the table, were discussed in Section 8. In addi-
tion, the first step requires unlinking of all target blocks.

Unlinking is the act of redirecting all entrances to and ex-

its from a block (including self-loops) to instead exit the
code cache. These redirections involve modifying direct

branch instructions. IA-32 provides an atomic four-byte

memory write (though despite the implications of the IA-
32 documentation [23, vol. 3], cross-cache-line code

modifications are not atomic with respect to instruction

fetches). A branch modification is a single write and can
be made atomic by ensuring that the branch instruction’s

immediate operand in the code cache does not cross a

processor cache line. A thread executing that branch will
see either the linked state or the unlinked state — nothing

inconsistent. This part of the flushing algorithm does not
change from thread-private to thread-shared caches.

9.2 Delayed Deletion

While making a block inaccessible in the future can be

done with atomic operations, actually freeing that block
is much more difficult. We must be certain that no thread

is currently inside the block. One strategy is to impose
a barrier at entrance to the code cache and wait for all

threads to exit. When no thread is in the code cache,

clearly any block can be freed. We implemented this
strategy but ran into several problems. Threads may re-

main in the cache for an unbounded amount of time be-

fore coming out, if in a loop or at a system call. This leads
to two problems: first, freeing of blocks may be delayed

indefinitely; and second, the application may make no

forward progress because of the cache entrance barrier.

A third problem is that the lock used to precisely count
the threads as they exit ends up with very high contention

(since every thread acquires it on every cache entrance

and exit). The end result is both non-prompt deletion and
poor performance.

As a real-world example of how important it is to

free memory invalidated by cache consistency events,
consider VSSTat.exe, the tray bar process for McAfee

VirusScan [29]. It loads and then unloads the same
shared library over one thousand times in the course of

a few minutes of execution. While this is clearly subopti-

mal native behavior, our platform should faithfully main-
tain the application’s characteristics. Yet without actual

block freeing, our overall memory usage was fifty times

what it should have been. While a more targeted solution
to library reloading can remove this source of cache dele-

tion, page or subpage consistency events due to cross-

modified or self-modified code still demand more effi-
cient general deletion support.

Our solution is to not require that all threads be out of

the cache simultaneously, but rather that all threads that
were in the cache at the time of the target block’s unlink-

ing have exited the cache at least once. This avoids the
heavyweight entrance barrier and solves the performance

problem. To determine whether a thread has exited since

the unlink, we use timestamps, and to find the last thread,
reference counting. A global timestamp is incremented

on each unlink of a set of blocks (e.g., for each cache con-

sistency event). That set of blocks is placed as a new en-
try in a pending-deletion list. The list entry also records

the global timestamp and the total number of threads at

the time of the unlink (which is the reference count). We
use the total to avoid having to know how many threads

are in the cache versus waiting at synchronization points.

Furthermore, requiring every thread to indicate it is no
longer using the set of blocks solves problems not only

with stale code cache execution but with accesses to data

structures corresponding to stale blocks.
Each thread remembers the timestamp at which it last

walked the pending-deletion list. As each thread en-
counters a synchronization point (entering or exiting the

cache, or thread death), it walks the pending-deletion list

and decrements the reference count for every entry whose
timestamp is greater than its own. After the walk, the

thread sets its timestamp to the current global timestamp.

The pending-deletion list is kept sorted (by prepending
new entries) so that each walk can terminate at the first

entry that has already been visited by that thread.

When a pending-deletion entry’s reference count
reaches zero, its blocks are guaranteed to be no longer in

use either for execution in the code cache or examination

by the runtime system. The blocks’ data structures can
now be freed, and their cache space re-used. Re-use of

cache space is not as simple as for thread-private caches,
where schemes like empty-slot promotion [5] are effec-



Without system call flag
With system call flag

  0%

  10%

  20%

  30%

  40%

  50%

  60%

  70%

  80%

  90%

  100%

VsStat.NETSPECJVM

%
 o

f u
nl

in
ke

d 
fr

ag
m

en
ts 

th
at

 a
re

 fr
ee

d

Figure 4. The percentage of unlinked
blocks that are successfully freed by our
algorithm with and without the system
call flag addition, evaluated on applica-
tions with numerous cache consistency
events: dynamically generated code in
SPECJVM [36] and a sample .NET Frame-
work SDK application, and repeatedly-
unloaded libraries in VSSTat.exe, the tray
bar process for McAfee VirusScan [29].

tive. Victim blocks adjacent to the empty slot cannot be
proactively evicted (the multi-stage delayed deletion pro-

cess must be undergone to ensure they are unused first),
making the slots only useful to blocks that fit inside them.

Our solution is to use free lists of various sizes for shared

code caches.
Our delayed deletion algorithm still had one problem:

deletion delay is unbounded due to loops and system calls

in the cache. We address the system call problem with a
flag that is set prior to executing a system call and cleared

afterward. If the flag is set for a thread, that thread is not

included in the reference count for a to-be-deleted set of
target blocks. This scheme requires that during the un-

linking step all post-system-call points are also unlinked

prior to reading the system call flag. Otherwise a race in
reading the flag could result in the uncounted thread ac-

cessing stale and freed data. DynamoRIO routes all sys-

tem calls through a single point, facilitating an inexpen-
sive unlink (if system calls are instead scattered through-

out the code cache, an always-present check for whether
to exit may be more efficient than having to unlink every

single one of them). Upon exiting the code cache, the

thread must abandon any pointer to any blocks (such as
a last-executed pointer that some systems maintain) as it

may have already been freed. Figure 4 shows that this

system call addition to the algorithm makes a critical dif-
ference in effectiveness.

In practice we have not had a problem with loops.

Though DynamoRIO’s goal is to quickly enter steady
state in the form of loops in the cache, server appli-

cations’ steady-state loops often contain system calls,

which our algorithm does address. Another factor is
that applications with significant amounts of consistency

events tend to exit the cache more frequently as they ex-

ecute the code being unlinked. If problems with loops
do arise, as a last resort one can occasionally suspend the

looping threads in order to proactively free memory.

In addition to freeing blocks made invalid by con-
sistency events, freeing is required in order to impose

limits on the size of the cache for capacity manage-
ment. Unfortunately, straightforward single-block evic-

tion strategies such as first-in-first-out or least-recently-

used that have been shown to work well with thread-
private caches [5, 20] simply do not work with thread-

shared caches, as no block can be freed immediately in

an efficient manner. Capacity schemes must account for
either a high cost of freeing or for a delay between asking

for eviction and actual freeing of the space.

10 Related Work

Software code caches are found in a variety of sys-
tems. Dynamic translators use code caches to reduce

translation overhead [10, 33, 41], while dynamic opti-
mizers perform native-to-native translation and optimiza-

tion using runtime information not available to the static

compiler [4, 8]. Similarly, just-in-time (JIT) compilers
translate from high-level languages to machine code and

cache the results for future execution [1, 3, 16, 22]. In-

struction set emulators [11] and whole-system simula-
tors [28, 40] use caching to amortize emulation over-

head. Software code caches are also coupled with hard-

ware support for hardware virtualization [7, 12] and in-
struction set compatibility [14, 15, 19, 24]. To avoid

the transparency and granularity limitations of inserting

trampolines directly into application code, recent run-
time tool platforms are being built with software code

caches [6, 27, 32, 34].
Not all software code cache systems support multi-

ple threads. Whole-system simulators, hardware virtu-

alization systems, and instruction set compatibility sys-
tems typically model or support only a single processor,

resulting in a single stream of execution (an exception

is VMWare’s multiprocessor support, but for which no
technical information is available). Other tools and re-

search systems target platforms on which kernel threads

are not standard.
Many dynamic translation and instrumentation sys-

tems that do support threads have limited solutions to

threading issues. Valgrind [32] is single-threaded and
multiplexes user threads itself. Aries [41] uses a sin-

gle global lock around runtime system code and sup-
ports freeing cache space only via forcing all threads out

of the cache. DynamoRIO [6] originally used thread-

private code caches. FX!32 [9] supports multiple threads
but does not support cache consistency or runtime cache



management, using only persistent caches built via of-

fline binary translation. Mojo [8] uses thread-shared
trace caches but thread-private basic block caches. Its

cache management consists of suspending all threads,

which it only does upon reaching the capacity limit of
the cache as it does not maintain cache consistency and

cannot afford the suspension cost at more frequent inter-

vals. Pin [27] has an adaptive thread-local storage ap-
proach, using absolute addressing until a second thread

is created, when it switches to a stolen register. Further
information on its handling of threads is not available.

Some threading problems are more easily solved in

other types of runtime systems. Dynamic translators and
just-in-time compilers are able to set up their own thread-

local scratch space by allocating themselves a register, as

opposed to native-to-native systems that must steal from
the application in order to operate transparently.

Language virtual machines (e.g., Java virtual ma-

chines) often virtualize the underlying processors and
perform thread scheduling themselves. They do not al-

low full pre-emption but rather impose synchronization

points where thread switches may occur, typically at
method entries or loop backedges. These points are used

to simplify garbage collection by requiring all mutators
(application threads) to be at synchronization points be-

fore garbage collection can proceed [2]. The overhead

from such frequent synchronization is more acceptable
in a virtual machine than a native-to-native system.

Garbage collection uses reference counting in a dif-

ferent way than our delayed deletion algorithm. Garbage
collection determines what data is reachable from a root

set, operating either in a stop-the-world fashion or by in-

strumenting stores to ensure that any references between
collection sets are known. Deleting code blocks cannot

use similar methods as instrumenting every block en-

trance and exit would be prohibitively expensive. Any
thread can reach any block that is accessible via links or

indirect branch lookup tables. Our reference count indi-

cates not which threads are using target data, but which
threads might be using target data.

Another difference between language virtual ma-
chines and other systems is that JIT-compiled code cache

management operates at a coarser granularity, methods,

than the blocks of code required for incremental code dis-
covery in a system operating on arbitrary binaries. JIT

compilers often go to great lengths to avoid compiling

code that might ever need invalidation [35].

11 Conclusions

This paper presents and discusses our implementation

of thread-shared code caches that avoids brute-force all-
thread-suspension and monolithic global locks. Our fi-

nal design includes medium-grained runtime system syn-

chronization that reduces lock contention, trace building
that combines efficient private construction with shared

results, in-cache lock-free lookup table access in the

presence of entry invalidations, and a delayed deletion al-
gorithm based on timestamps and reference counts. We

evaluated our solutions in the DynamoRIO runtime sys-

tem on real-world server applications and found that our
thread-shared caches reduce memory usage by up to fac-

tor of nine and improve throughput by up to a factor of

four versus thread-private caches.
Our implementation supports mixing thread-private

and thread-shared caches. We plan to extend this work
by analyzing the differences in trace shape and quality

between all-shared and all-private traces and by further

exploring adaptive hybrid sharing schemes.

12 Acknowledgements

The authors thank Lina Tabch for her time and exper-

tise with the server benchmarks in this paper.

References

[1] ADL-TABATABAI, A., CIERNIAK, M., LUEH, G.,
PARIKH, V. M., AND STICHNOTH, J. M. 1998. Fast,
effective code generation in a just-in-time Java compiler.
In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI ’98), 280–290.

[2] ALPERN, B., ATTANASIO, C. R., BARTON, J. J.,
BURKE, M. G., P.CHENG, CHOI, J.-D., COCCHI,
A., FINK, S. J., GROVE, D., HIND, M., HUMMEL,
S. F., LIEBER, D., LITVINOV, V., MERGEN, M. F.,
NGO, T., RUSSELL, J. R., SARKAR, V., SERRANO,
M. J., SHEPHERD, J. C., SMITH, S. E., SREEDHAR,
V. C., SRINIVASAN, H., AND WHALEY, J. 2000. The
Jalapeño virtual machine. IBM Systems Journal, 39(1).

[3] ARNOLD, M., FINK, S., GROVE, D., HIND, M., AND

SWEENEY, P. F. 2000. Adaptive optimization in
the Jalapeño JVM. In ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA ’00), 47–65.

[4] BALA, V., DUESTERWALD, E., AND BANERJIA, S.
2000. Dynamo: A transparent runtime optimization sys-
tem. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’00), 1–
12.

[5] BRUENING, D., AND AMARASINGHE, S. 2005. Main-
taining consistency and bounding capacity of software
code caches. In International Symposium on Code Gen-
eration and Optimization (CGO ’05), 74–85.

[6] BRUENING, D. 2004. Efficient, Transparent, and Com-
prehensive Runtime Code Manipulation. PhD thesis,
M.I.T.

[7] BUGNION, E., DEVINE, S., AND ROSENBLUM, M.
1997. Disco: Running commodity operating systems on
scalable multiprocessors. In 16th ACM Symposium on
Operating System Principles (SOSP ’97), 143–156.

[8] CHEN, W., LERNER, S., CHAIKEN, R., AND GILLIES,
D. M. 2000. Mojo: A dynamic optimization system. In
3rd ACM Workshop on Feedback-Directed and Dynamic
Optimization (FDDO-3), 81–90.

[9] CHERNOFF, A., HERDEG, M., HOOKWAY, R., REEVE,
C., RUBIN, N., TYE, T., YADAVALLI, S. B., AND



YATES, J. 1998. FX!32: A profile-directed binary trans-
lator. IEEE Micro, 18(2) (Mar.), 56–64.

[10] CIFUENTES, C., LEWIS, B., AND UNG, D. 2002.
Walkabout — a retargetable dynamic binary translation
framework. In 4th Workshop on Binary Translation.

[11] CMELIK, R. F., AND KEPPEL, D. 1994. Shade: A fast
instruction-set simulator for execution profiling. ACM
SIGMETRICS Performance Evaluation Review, 22(1)
(May), 128–137.

[12] CONNECTIX. Virtual PC. http://www.microsoft.
com/windows/virtualpc/default.mspx.

[13] CORMEN, T. H., LEISERSON, C. E., AND RIVEST,
R. L. 1990. Introduction to Algorithms. MIT
Press/McGraw-Hill Book Company, Cambridge, MA.

[14] DEHNERT, J. C., GRANT, B. K., BANNING, J. P.,
JOHNSON, R., KISTLER, T., KLAIBER, A., AND

MATTSON, J. 2003. The Transmeta code morphing
software: Using speculation, recovery, and adaptive re-
translation to address real-life challenges. In Interna-
tional Symposium on Code Generation and Optimization
(CGO ’03), 15–24.

[15] DESOLI, G., MATEEV, N., DUESTERWALD, E., FARA-
BOSCHI, P., AND FISHER, J. A. 2002. DELI: A new
run-time control point. In 35th International Symposium
on Microarchitecture (MICRO ’02), 257–268.

[16] DEUTSCH, L. P., AND SCHIFFMAN, A. M. 1984. Ef-
ficient implementation of the Smalltalk-80 system. In
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’84), 297–302.

[17] DREPPER, U., AND MOLNAR, I. The
Native POSIX Thread Library for Linux.
http://people.redhat.com/drepper/

nptl-design.pdf.

[18] DUESTERWALD, E., AND BALA, V. 2000. Software
profiling for hot path prediction: Less is more. In 12th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS ’00), 202–211.

[19] EBCIOGLU, K., AND ALTMAN, E. 1997. DAISY: Dy-
namic compilation for 100% architectural compatibility.
In 24th International Symposium on Computer Architec-
ture (ISCA ’97), 26–37.

[20] HAZELWOOD, K., AND SMITH, M. D. 2002. Code
cache management schemes for dynamic optimizers. In
Workshop on Interaction between Compilers and Com-
puter Architecture (Interact-6), 102–110.

[21] HENDERSON, K. 2005. The perils of fiber mode.
http://msdn.microsoft.com/library/en-us/

dnsqldev/html/sqldev_02152005.asp.

[22] HÖLZLE, U. 1994. Adaptive Optimization for Self: Rec-
onciling High Performance with Exploratory Program-
ming. PhD thesis, Stanford University.

[23] INTEL CORPORATION. 2001. IA-32 Intel Architecture
Software Developer’s Manual, vol. 1–3. Order Number
245470, 245471, 245472.

[24] KLAIBER, A., 2000. The technology behind
Crusoe processors. Transmeta Corporation, Jan.
http://www.transmeta.com/crusoe/download/

pdf/crusoetechwp.pdf.

[25] LARUS, J. R., AND PARKES, M. 2002. Using cohort
scheduling to enhance server performance. In USENIX
Annual Technical Conference, 103–114.

[26] LEE, D. C., CROWLEY, P. J., BAER, J., ANDERSON,
T. E., AND BERSHAD, B. N. 1998. Execution char-
acteristics of desktop applications on Windows NT. In
25th International Symposium on Computer Architec-
ture (ISCA ’98), 27–38.

[27] LUK, C.-K., COHN, R., MUTH, R., PATIL, H.,
KLAUSER, A., LOWNEY, G., WALLACE, S., REDDI,
V. J., AND HAZELWOOD, K. 2005. Pin: Building
customized program analysis tools with dynamic instru-
mentation. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’05),
190–200.

[28] MAGNUSSON, P. S., DAHLGREN, F., GRAHN, H.,
KARLSSON, M., LARSSON, F., LUNDHOLM, F.,
MOESTEDT, A., NILSSON, J., STENSTRÖM, P., AND

WERNER, B. 1998. SimICS/sun4m: A virtual work-
station. In USENIX Annual Technical Conference, 119–
130.

[29] MCAFEE. VirusScan. http://www.mcafee.com/.

[30] MICROSOFT CORP. 1996. DCOM technical overview.
http://msdn.microsoft.com/library/

backgrnd/html/msdn_dcomtec.htm.

[31] MICROSOFT CORPORATION. 2000. Inter-
net Information Services 5.0 technical overview.
http://www.microsoft.com/windows2000/tech

info/howitworks/iis/iis5techoverview.asp.

[32] NETHERCOTE, N., AND SEWARD, J. 2003. Valgrind:
A program supervision framework. In 3rd Workshop on
Runtime Verification (RV ’03).

[33] ROBINSON, A., 2001. Why dynamic trans-
lation? Transitive Technologies Ltd., May.
http://www.transitive.com/documents/

Why_Dynamic_Translation1.pdf.

[34] SCOTT, K., KUMAR, N., VELUSAMY, S., CHILDERS,
B., DAVIDSON, J., AND SOFFA, M. L. 2003. Reconfig-
urable and retargetable software dynamic translation. In
International Symposium on Code Generation and Opti-
mization (CGO ’03), 36–47.

[35] SREEDHAR, V. C., BURKE, M., AND CHOI, J.-D.
2000. A framework for interprocedural analysis and op-
timization in the presence of dynamic class loading. In
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’00), 208–218.

[36] STANDARD PERFORMANCE EVALUATION COR-
PORATION. SPEC JVM Client98 benchmark.
http://www.spec.org/osg/jvm98.

[37] TPC. TPC-C. http://www.tpc.org/tpcc/.

[38] WEB WIZ. Guestbook.
http://www.webwizguide.info/asp/

sample_scripts/guestbook_script.asp.

[39] WELSH, M., CULLER, D., AND BREWER, E. 2001.
SEDA: An architecture for well-conditioned, scalable
Internet services. In 18th ACM Symposium on Operating
Systems Principles, 230–243.

[40] WITCHEL, E., AND ROSENBLUM, M. 1996. Embra:
Fast and flexible machine simulation. In 1996 ACM SIG-
METRICS Conference on Measurement and Modeling of
Computer Systems, 68–79.

[41] ZHENG, C., AND THOMPSON, C. 2000. PA-RISC to
IA-64: Transparent execution, no recompilation. IEEE
Computer, 33(3) (Mar.), 47–53.


	Introduction
	Experimental Methodology
	Sharing Prevalence and Impact
	Sharing Choices
	Thread-Local Storage
	Synchronization
	Trace Building
	In-Cache Lookup Tables
	Code Cache Eviction
	Unlinking
	Delayed Deletion

	Related Work
	Conclusions
	Acknowledgements

