
Umbra: Efficient and Scalable Memory Shadowing

Qin Zhao
CSAIL

Massachusetts Institute of Technology
Cambridge, MA, USA
qin zhao@csail.mit.edu

Derek Bruening
VMware, Inc.

bruening@vmware.com

Saman Amarasinghe
CSAIL

Massachusetts Institute of Technology
Cambridge, MA, USA
saman@csail.mit.edu

Abstract
Shadow value tools use metadata to track properties of application
data at the granularity of individual machine instructions. These
tools provide effective means of monitoring and analyzing the run-
time behavior of applications. However, the high runtime overhead
stemming from fine-grained monitoring often limits the use of such
tools. Furthermore, 64-bit architectures pose a new challenge to the
building of efficient memory shadowing tools. Current tools are not
able to efficiently monitor the full 64-bit address space due to limi-
tations in their shadow metadata translation.

This paper presents an efficient and scalable memory shadowing
framework called Umbra. Employing a novel translation scheme,
Umbra supports efficient mapping from application data to shadow
metadata for both 32-bit and 64-bit applications. Umbra’s transla-
tion scheme does not rely on any platform features and is not re-
stricted to any specific shadow memory size. We also present sev-
eral mapping optimizations and general dynamic instrumentation
techniques that substantially reduce runtime overhead, and demon-
strate their effectiveness on a real-world shadow value tool. We
show that shadow memory translation overhead can be reduced to
just 133% on average.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Optimization, Run-time environments

General Terms Performance

Keywords Shadow Memory, Dynamic Optimization

1. Introduction
Shadow value tools store information about every application data
location accessed by an application. This information, or shadow
metadata, is tracked at the granularity of individual instructions
as the application executes. Shadow value tools have been created
for a wide variety of purposes, including finding memory usage
errors [21, 24], tracking tainted data [5, 18, 20], detecting race
conditions [9, 12, 22, 23], and many others [3, 14, 15, 29].

Although hardware-supported shadow value frameworks have
been proposed both for specific tools [7, 8, 26, 27, 30] and gen-
eral tool classes [4, 6, 31], shadow value tools in use today are
implemented entirely in software. This allows them to run on com-
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Figure 1. The performance of Umbra compared to Valgrind on 64-
bit Linux on the SPEC CPU2006 benchmarks, focusing on shadow
metadata mapping. Umbra is configured to use 2 shadow bits per
application byte, to match the setup of the Valgrind MemCheck
tool [24]. As shown in Section 4, Umbra achieves even better
performance when using one shadow byte per application byte.

modity hardware, thereby broadening their reach. Software-based
shadow value tools are typically implemented using a dynamic bi-
nary instrumentation system like DynamoRIO [2], Pin [13], or Val-
grind [17]. By inserting additional instructions to be executed along
with the application’s code, a shadow value tool can update shadow
metadata during program execution.

The inserted instrumentation code performs two tasks: map-
ping, which maps from an application data location to the cor-
responding shadow metadata location, and updating, which per-
forms customized metadata updates and checks. These two tasks
are also the major source of runtime overhead in software shadow
value tools. In the current state-of-the-art tools, full memory shad-
owing results in one or two orders of magnitude slowdown. This
prohibitive overhead results in infrequent deployment of shadow
value tools, even though they can potentially lead to important in-
sights about an application’s behavior that in turn can be used for
performance tuning or debugging. In this paper, we describe how
our framework reduces the metadata mapping overhead. Figure 1
compares the mapping overhead of Umbra to the most widely-used
memory shadowing framework, Valgrind. Umbra is three times
faster.

1.1 Shadow Metadata Mapping Schemes
Shadow metadata mapping is the process of translating an applica-
tion data location to its corresponding shadow metadata location.
Shadow value tools typically use either a one-level or two-level



mapping scheme. In a one-level scheme, the entire application ad-
dress space is shadowed with a single, contiguous shadow address
space. Mapping becomes a simple offset with a scaling factor, de-
pending on the relative sizes of the spaces. However, reserving such
a large piece of address space endangers the robustness of some
applications. Furthermore, operating systems often impose require-
ments on where certain structures are located, which constrains the
deployment of a one-level scheme.

A two-level mapping scheme splits up the shadow memory into
regions with the first level of translation used to determine which
region is to be used for a particular memory address. All existing
two-level schemes map the address space uniformly. This works
well for 32-bit address spaces but cannot scale up to full 64-bit
address spaces. A key insight of Umbra is to allocate and perform
mappings based on the application’s memory allocations.

1.2 Contributions
The following are the key contributions of this paper:

• We propose a flexible shadow memory mapping scheme that
does not rely on idiosyncrasies of the operating system or un-
derlying architecture and is not limited to specific shadow meta-
data sizes or semantics. To the best of our knowledge, it is the
first software shadow memory mapping scheme that scales to
both 32-bit and full 64-bit address spaces efficiently.

• We present several novel optimizations to improve the speed of
shadow metadata mapping.

• We present a general 3-stage code layout strategy for efficient
dynamic instrumentation.

• We show that shadow memory translation can be implemented
with low average overhead of 133%.

• We study the trade-off between metadata space usage and meta-
data mapping efficiency.

• We demonstrate the usefulness of Umbra by implementing a
shared data reference detection tool that is suitable for analyz-
ing multi-threaded application data access behavior.

1.3 Outline
The rest of the paper is organized as follows: Section 2 describes
the basic framework of Umbra. Section 3 then presents optimiza-
tions to improve the basic system. Section 4 evaluates the perfor-
mance of Umbra. Section 5 discusses related work and Section 6
concludes the paper.

2. Base System
We designed Umbra with the following goals in mind:

Flexibility. Umbra should be a general-purpose memory shadow-
ing framework and not be tied to any particular use case. It should
support a wide range of shadow metadata sizes a tool might need,
from a single shadow bit per application byte to several shadow
bytes per application byte. Many prior systems were built with only
one application in mind and only work well with certain predeter-
mined metadata sizes.

Platform independence. Umbra should be platform independent
and not rely on features of a particular platform in order to achieve
efficiency. This makes the system easy to port.

Efficiency. Umbra’s runtime overhead should be as low as possi-
ble.

2.1 Base System Overview
There are two basic components to Umbra. The shadow metadata
manager is in charge of shadow memory management, including

allocating and de-allocating shadow metadata, as well as maintain-
ing the mapping information between application data and shadow
metadata. The instrumenter instruments the program during its ex-
ecution. The inserted instructions perform metadata mapping and
updating for each instruction in the application.

2.2 Shadow Metadata Manager
An application’s data is stored either in registers or in memory.
These are dealt with differently.

2.2.1 Metadata Management for Registers
Most modern processors have a fixed and limited number of regis-
ters that can be used by a program. Furthermore, the registers used
by every instruction can be determined by inspection. Thus we are
able to statically allocate shadow metadata for every register and
bind it accordingly. If an instruction uses any registers, we can in-
sert metadata updating code to update or check the corresponding
metadata directly without any metadata mapping code.

2.2.2 Metadata Management for Memory
Unlike registers, a single instruction can access dynamically vary-
ing memory locations. Thus, the shadow metadata for applica-
tion memory must be managed dynamically. The Shadow Meta-
data Manager dynamically allocates and frees shadow metadata and
must perform metadata mapping to locate the appropriate shadow
metadata before that metadata can be updated. In Umbra, metadata
mapping is achieved via a shadow memory mapping table.

We observe that the application memory is organized into a
number of memory modules, including stacks, heaps, data and code
segments of executables and shared libraries, etc. This observation
inspires us to use a simple yet novel shadow memory mapping
scheme that uses the application memory module as a mapping
unit: for each such module the Shadow Metadata Manger allocates
a shadow memory module and associates it with the application
memory module. For example, Table 1 shows that the simple pro-
gram HelloWorld running on Linux has five application memory
modules. We simply associate each module with one shadow mem-
ory module.

Module Application Memory Shadow Memory
HelloWorld 08048000-0804b000 28048000-2804b000
[heap] 097a3000-097c4000 297a3000-297c4000
libc.so b7e20000-b7f7f000 57e20000-57f7f000
ld.so b7f8b000-b7fab000 57f8b000-57fab000
[stack] bfb95000-bfbaa000 5fb95000-5fbaa000

Table 1. Application memory modules for a simple application.

By focusing on allocated memory regions rather than on the
entire address space, this approach scales to large 64-bit address
spaces without requiring multiple translation steps or extremely
large tables: the table scales with the application’s memory use,
independently of the maximum size of the address space.

The module level mapping can be further improved by moving
to a more coarse-grained mapping: address space unit mapping.
The idea is to virtually split the whole process address space into
two address spaces: the application address space and the shadow
address space, as was implemented by TaintTrace [5]. However,
unlike TaintTrace, which splits the space into two equally-size
pieces, we carve up the address space in a much more flexible and
efficient manner.

We treat the whole process address space as a collection of
address space units. Each address space unit has three possible
states:



• An application address space unit is used for hosting applica-
tion modules. The size of each application address space unit
is fixed, e.g., 256MB for 32-bit architectures and 4GB for 64-
bit architectures, and its start address must be unit-aligned. This
restriction is to enable a fast check to determine whether a mem-
ory address is in an application unit.

• A shadow address space unit is reserved for storing shadow
memory metadata. The size of the shadow units depends on
the size of the shadow metadata. For example, when using one
shadow bit per application byte, the shadow units are one-eighth
the size of the application units.

• An unused unit is memory that is not yet used.

At the start of application execution, we first obtain information
about all of the application memory modules. We assign those
address space units that contain application modules as application
address space units. Then we reserve new shadow address space
units for each application unit. If an application memory module
spans multiple units, we reserve multiple contiguous shadow units
for its metadata. Table 2 shows the address space units and the
modules inside each for the HelloWorld example of Table 1.

Application Memory Shadow Memory
Unit 00000000-10000000 20000000-30000000
Module 08048000-0804b000 28048000-2804b000

097a3000-097c4000 297a3000-297c4000

Unit b0000000-c0000000 50000000-60000000
Module b7e20000-b7f7f000 57e20000-57f7f000

b7f8b000-b7fab000 57f8b000-57fab000
bfb95000-bfbaa000 5fb95000-5fbaa000

Table 2. Address space units and the modules inside each for the
HelloWorld example of Table 1.

When the application requests a new piece of memory from the
operating system via a system call, the Shadow Metadata Manager
intercepts the the system call and ensures that the application re-
ceives that new memory from either an application address space
unit or an unused unit that then becomes an application unit. The
Manager then adjusts the shadow units to maintain the correspond-
ing shadow memory. If the application resizes an existing piece of
memory, the Manager performs the same actions on the shadow
memory. This may require relocating the shadow memory if there
is a conflict between application memory and shadow memory. To
detect and handle cases where the application obtains new memory
without using system calls, e.g., during stack expansion, we use a
signal handler to catch and resolve the access violation signal raised
by accessing the unallocated corresponding shadow memory.

This simple mapping scheme allow us to use a small shadow
memory mapping table to maintain the translation information be-
tween application and shadow memory modules. Table 3 shows the
mapping table of the HelloWorld example. Each application ad-
dress space unit has one entry in the mapping table, which stores
two values:

• baseapp is the start address of the application address space
unit, which is used for table entry lookup.

• offset is an offset value for address translation.

When translating from an application address addrapp to its
corresponding shadow address addrshd, we first identify in which
application unit addrapp is contained by using a mask to calculate
addrapp aligned to the unit size. We compare that value with the
baseapp of each table entry, and then calculate addrshd using

baseapp Offset

0x00000000 0x20000000
0xb0000000 -0x60000000

Table 3. Shadow memory mapping table for HelloWorld example.

addrapp and offset from the matched entry based on the equation
below:

addrshd = addrapp × scale + offset (1)
Scale is the scale factor from application memory to shadow mem-
ory, and it is 1 in the HelloWorld example for one shadow byte per
application byte mapping. If we restrict the shadow metadata unit
size to be a power of 2, this equation can be optimized using a shift
as shown below, which is a faster operation than multiply on most
architectures:

addrshd = addrapp � scaleshift + offset (2)

2.3 Instrumenter
The instrumenter inserts the metadata tracking (i.e., metadata map-
ping and updating) code into the application code stream. Metadata
updating code varies depending on the shadow value tool. Here we
focus on the metadata mapping code. In particular, we focus on
code for application memory accesses, since metadata for registers
is statically bound. For each application memory reference, the in-
strumented code performs a sequence of operations as shown in
Figure 2:

Metadata Tracking(Instr)
1: Save application context
2: Calculate addrapp from Instr and saved context
3: Search mapping table for the correct entry
4: Calculate addrshd

5: Update metadata at addrshd

6: Restore application context

Figure 2. Pseudocode for metadata tracking instrumentation.

Steps 1 and 6 preserve the application’s context. Step 2 calcu-
lates the memory address addrapp from the instruction and the ap-
plication’s context (e.g., the register value used as a base register
in the instruction’s address operand). Step 3 walks the mapping
table to find the containing application address space unit and its
translation information. Step 4 then calculates the corresponding
shadow memory address addrshd using addrapp and the transla-
tion information found in Step 3. Step 5 performs metadata update
operations, which are specified by the Umbra client.

2.4 Client Interface
Umbra’s memory shadowing framework is combined with a client
to produce a complete shadow value tool. Umbra provides a simple
interface that allows the tool developer to concentrate on inserting
code for the client’s metadata updates (Step 5 in Figure 2) without
worrying about the details of mapping between application data and
shadow metadata.

The interface includes a data structure umbra_client_t and
a list of event callback hooks. The umbra_client_t structure,
shown in Figure 3, allows a client to specify the parameters of the
desired shadow memory mapping, such as the number of registers
to be used, the unit size of application data and of shadow meta-
data, and the events of interest. In theory, Umbra could allow the
application data unit size (app_size) and shadow metadata size
(shd_size) to be any value. In our current version we restrict the
value to a power of two in order to simplify the implementation and



struct umbra_client_t {
/* shadow memory specification */
int num_regs; /* number of registers to use */
int app_size; /* application data unit size */
int shd_size; /* shadow metadata unit size */
/* event callback hooks */
...

}

Figure 3. A client specifies desired parameters of Umbra’s mem-
ory shadowing framework using the umbra client t data struc-
ture.

provide better performance. Most tools desire a power-of-two size
regardless.

An Umbra client must export an initialization function named
umbra_client_init, which is called by Umbra at application
start time. The function fills in the fields of umbra_client_t and
registers event hooks to point at client-provided callback functions.
Umbra then sets up the shadow memory and instruments the appli-
cation code according to the client specifications. Umbra also calls
the provided callback functions when the indicated events occur.
Examples of commonly used event hooks are listed in Table 4.

Event Hooks Description
client_exit Process exit
client_thread_init Thread initialization
client_thread_exit Thread exit
shadow_memory_create Shadow memory creation
shadow_memory_delete Shadow memory deletion
instrument_update Insert metadata update code

Table 4. Umbra client event callback hooks.

The instrument_update event is the most important callback
function to be implemented by a client. Umbra passes needed infor-
mation to the client via callback function arguments, including the
memory reference instruction to be instrumented and an array of
registers whose first register will contain the address of the corre-
sponding shadow metadata during execution of the instruction. The
client-implemented callback function inserts metadata update code,
which will be executed immediately prior to the application’s mem-
ory reference instruction each time that instruction is invoked. The
shadow_memory_create and shadow_memory_delete events
allow a client to perform metadata initialization and collect or re-
port results, respectively, while the thread and process events allow
the client to update any bookkeeping it maintains.

3. Optimization
The framework described in Section 2 works correctly, but it incurs
large time and space overheads. We can significantly reduce these
overheads using a number of techniques. Performance is improved
in two different ways:

• We present several mapping improvements that speed up or
even avoid walking the mapping table during translation.

• We optimize the inserted instrumentation itself to reduce over-
head.

3.1 Translation Optimizations
We use a number of caching strategies to eliminate translation
overhead.

3.1.1 Thread-Private Mapping Table (O1)
To support multi-threaded applications, any query or update of
the shadow memory mapping table must be guarded by a lock.
This incurs locking overhead and may suffer from lock contention.
We use a thread-private mapping table to reduce such overhead.
The thread-private table caches the information from the global
table. Any application memory update by a thread is immediately
pushed to the global mapping table. The thread-private table only
pulls updates from the global table when necessary. The rest of the
data structures described in this section are thread-private, thereby
avoiding the complexity and overhead of synchronization.

3.1.2 Metadata Lookup Hashtable (O2)
Traversing the mapping table for every memory reference can cause
large overheads. A metadata lookup hashtable is introduced to im-
prove lookup speed. This table serves a similar role as the transla-
tion lookaside buffer (TLB) does for virtual page table lookup. The
lookup hashtable has a fixed number of slots that store pointers to
thread-private mapping table entries. It uses a unit-aligned appli-
cation address as search key, and returns the mapping table entry
pointer if the requested address is present in the hashtable. If the
address is absent, a mapping table traversal is performed, and the
hashtable is updated with the newly found pointer.

3.1.3 Last Unit (Memoization) Check (O3)
Each thread also stores the memory mapping found in the previous
translation lookup. Before performing any lookup, we first check
if it is the memory unit we found last time. This optimization
takes advantage of the reference locality of the overall application
execution.

3.1.4 Reference Cache (O4)
Our final translation optimization tries to avoid the mapping table
lookup by taking advantage of each individual instruction’s refer-
ence locality: an instruction typically accesses memory at the same
location or at a nearby location on each subsequent execution.

A reference cache is a software data structure containing the
same information as the mapping table entry:

struct reference_cache_t {
void *base;
void *offset;

}

base is a unit-aligned application memory address while offset
holds the corresponding mapping information to its shadow mem-
ory.

We associate each memory reference instruction with a refer-
ence cache that stores the memory reference and translation infor-
mation from the instruction’s previous execution. When translat-
ing a memory address, we first check the reference cache to see if
it accesses the same unit as its previous execution. If it matches,
we use the stored offset directly. Otherwise, the translation pro-
ceeds to the lookup, and the reference cache is updated with the
new mapping information. Because the total number of static ap-
plication instructions that are executed in any one run is small, the
total memory usage for the reference cache is small as well, only a
few kilobytes for most applications.

As stack memory references in one thread all access the same
memory unit, they all share one reference cache. If the application
swaps stacks, only one reference cache miss will occur followed by
a series of hits once the new stack’s information is in the cache.



3.2 Instrumentation Optimizations
In addition to improving the performance of the metadata mapping
scheme, we also apply several general optimizations to our inserted
instrumentation.

3.2.1 Context Switch Reduction (O5)
Previous work [5, 20, 29] proposed optimization to reduce context
switch overhead by analyzing register usage and utilizing dead
registers whenever possible. We further extend this optimization.
In the case that we have to save and restore a register for stealing,
we expand the register steal range as far as possible. Typically,
more than one application memory reference falls in the range,
allowing us to share the save and restore cost across multiple
shadow memory translations. Careful attention must be paid to fault
handling, where the register’s value may need to be restored even
when there is no explicit use in the regular execution path.

3.2.2 Reference Group (O6)
We observe that it is often the case that, in the same basic block,
several instructions reference memory close to each other: e.g.,
function local variables, or different fields of the same object. If
we statically know that two memory references access the same
application address space unit or two contiguous units, we cluster
these two instructions into one reference group. All the memory
references in a reference group share the same reference cache. In
addition, only the first reference need perform a mapping lookup.
All subsequent references can use the translation information from
that first lookup.

A trace is a code fragment with a single entry but multiple
exits. DynamoRIO builds traces from several frequently executed
basic blocks. Reference group optimization can be extended over
multiple basic blocks of a trace due to the single entry property.

This optimization assumes that shadow memory is allocated
contiguously if its application memory is allocated together, which
is guaranteed to be true in Umbra’s mapping scheme.

3.2.3 3-Stage Code Layout
The metadata mapping pseudocode from Figure 2 is updated in
Figure 4 with the addition of the optimizations presented in Sec-
tion 3.1.

If we inlined all 27 steps for every memory reference instruc-
tion, the code size expansion would be prohibitive, causing poor
performance in both the software code cache and hardware instruc-
tion cache. Instead, we split the instrumentation into three parts,
resulting in a 3-stage code layout:

• The first stage (inline stub) is inlined for fast execution at a
small space cost and minimal context switch; this stage includes
the address check in steps 3–4.

• The second stage (lean procedure) is invoked if the inlined
check of the first stage misses. It uses shared code with a fast
function call protocol to execute the code and return with small
context switch overhead. This stage is used for steps 5–19. The
fast function call protocol includes only a partial context switch
and uses a memory store and jump instructions to perform a call
and return without requiring a stack. The callee cannot use the
stack but has several saved registers available for scratch space.

• The third stage (callout) performs a full context switch and
invokes shared code that is implemented in C rather than hand-
coded in machine instructions. This stage is invoked only if the
second stage lookup fails; it covers step 20–24.

In this way, we are able to strike a balance between performance
and space requirements, reducing the size of instrumented code

Metadata Tracking(Instr)
1: Save application context
2: Calculate addrapp from Instr and saved context
Inline stub:
3: (O4) Check Instr’s Reference Cache
4: Jump to 25 if hits
Lean procedure:
5: (O3) Check Last Unit
6: Jump to 9 if no match
7: Update Instr’s Reference Cache
8: Jump to 25
9: (O2) Search Metadata Lookup Hashtable
10: Jump to 14 if not found
11: Update Instr’s Reference Cache
12: Update Last Unit
13: Jump to 25
14: (O1) Search Thread Private Mapping Table
15: Jump to 20 if not found
16: Update Hashtable
17: Update Last Unit
18: Update Instr’s Reference Cache
19: Jump to 25
Callout:
20: Search Global Mapping Table
21: Update Thread-Private Mapping Table
22: Update Hashtable
23: Update Last Unit
24: Update Instr’s Reference Cache
addrshd calculation:
25: Calculate addrshd

26: Update metadata at addrshd

27: Restore application context

Figure 4. Pseudocode for optimized shadow metadata tracking
instrumentation.

without compromising the optimizations. In most cases, only the
first stage is executed, allowing us to avoid large overheads due
to context switches. This 3-stage code layout strategy can also
be applied to general dynamic instrumentation tasks for better
performance without sacrificing functionality, where an inline stub
performs simple common-case actions and a lean procedure and
callout are used for less common and more complex situations.

3.3 Mapping Table Update
Although the performance of mapping table lookups is improved,
the multiple levels of cache increase the complexity of updating
the shadow memory mapping table when the application memory
layout changes.

Adding a new application address space unit is normally cheap,
requiring only a new entry in the global mapping table. The new
information will be propagated into every level of cache lazily as
the application accesses the newly allocated memory.

In contrast, removing an entry is much more expensive, requir-
ing that we suspend all threads while we update every level of cache
in every thread. We try to delay such updates on the mapping table
for better performance. For example, if the application de-allocates
(unmaps) a piece of memory, we delete the corresponding shadow
memory, but do not change the mapping table even if there is no
application memory in the application address space unit. If the ap-
plication later allocates memory from that same application address
space unit, the same shadow address space unit and mapping table
entry are used.

In some cases an expensive update is unavoidable. For example,
if an application requests memory from a fixed address that was re-



served for shadow memory; or an application expands its memory
across a unit boundary and causes a conflict with shadow mem-
ory. For such cases, we suspend all the threads, move the shadow
memory, relabel the address space units, and update every level of
cache in all threads. These are extremely rare events with our large
mapping units and as such they have negligible impact on overall
performance. In contrast, if we used a finer-grained module-level
mapping, we would have to update all of the cached mapping in-
formation on every module change, including each call to mremap.

3.4 Discussion
This mapping scheme and optimization works well even for large
applications with complex memory usage. It avoids updating the
mapping table when an application repeatedly allocates and de-
allocates memory in the same address space unit, and it is flexi-
ble enough to handle rare conflicts by relocating the shadow mem-
ory and updating the mapping table. In a 64-bit architecture, the
available address space is much larger than current applications use
and even larger than current hardware’s physical capacity, so our
scheme can easily handle large applications without any problem.
In contrast, it is possible that a 32-bit address space might be ex-
hausted by the application and Umbra together. However, this pos-
sibility is present for any shadow value framework, including the
widely used MemCheck [24]. Umbra’s shadow memory layout can
be configured to match Memcheck’s second-level shadow memory
layout, and Umbra’s small mapping table occupies less space than
MemCheck’s first-level table. Thus, Umbra should be able to oper-
ate on any application that runs successfully under MemCheck.

In addition to simplifying the handling of memory map updates,
address space unit mapping has other performance advantages over
module level mapping. Because one application address space unit
often contains several memory modules, it not only makes table
traversal faster due to fewer entries, but also increases the hit ratio
of the hashtable, last unit cache, and the reference cache.

We can further reduce the memory used by our mapping
scheme. For example, it is possible to allocate shadow memory
in a lazy way by not allocating it until its corresponding applica-
tion memory is accessed and an access violation signal is raised for
accessing the metadata.

4. Evaluation
In this section, we evaluate the performance of Umbra on a number
of benchmarks.

4.1 Experimental Setup
We have implemented Umbra on top of DynamoRIO version
1.4.0 [1] for Linux. We used the SPLASH-2 [28] and SPEC
CPU2006 suite [25] 1 with the reference input sets to evaluate
Umbra. All the benchmarks are compiled as 64-bit using gcc 4.1
-O2. We ran our experiments on dual-die quad-core Intel Xeon
processors with 3.16GHz clock rates, 12MB L2 cache on each
die, and 8GB total RAM. The operating system is 64-bit Debian
GNU/Linux 5.0. We configured Umbra to use 4GB as the address
space unit size.

4.2 Performance Evaluation
In the first experiment, we assess the translation overhead. For ev-
ery memory reference performed by the application we calculate
the corresponding shadow memory address without any further op-
eration being done on the shadow memory. The resulting perfor-
mance normalized to native execution is shown in Table 5. The sec-
ond column (DR) shows that the DynamoRIO core has an average

1 wrf is excluded because it cannot be compiled by gcc 4.1

slowdown of 14%. The third (1B-1B) and fourth (1B-2b) columns
list the performance of Umbra mapping every byte of application
memory into 1-byte and 2-bit shadow memory, respectively. The
slowdown varies from about 10% to 6x, and the benchmarks that
run slower in DynamoRIO usually suffer more runtime overhead
under Umbra, implying that the sources of overhead are similar in
both Umbra and DynamoRIO.

Umbra Valgrind
Benchmark DR 1B-1B 1B-2b base map
400.perlbench 1.76 4.57 6.12 10.00 19.20
401.bzip2 1.07 2.75 3.75 6.43 10.06
403.gcc 1.20 2.24 2.80 4.23 7.40
429.mcf 1.08 1.75 1.92 2.40 2.78
445.gobmk 1.59 5.01 6.82 10.93 15.96
456.hmmer 1.01 2.85 3.79 5.31 8.82
458.sjeng 1.50 4.91 6.63 10.81 14.85
462.libquantum 0.98 1.07 1.11 2.55 3.02
464.h264ref 1.29 4.00 5.57 8.47 37.04
471.omnetpp 1.20 2.44 3.41 3.68 6.84
473.astar 1.05 2.15 2.62 3.89 5.55
483.xalancbmk 1.28 2.57 3.25 4.60 7.76
CINT Average 1.25 3.03 3.98 6.11 11.61
410.bwaves 1.04 1.52 1.89 3.64 5.67
416.gamess 0.96 2.33 3.21 4.63 8.37
433.milc 1.00 1.23 1.38 2.04 3.05
434.zeusmp 0.99 1.36 1.66 — —
435.gromacs 1.03 1.84 2.77 8.20 12.31
436.cactusADM 1.00 2.04 4.49 3.79 8.62
437.leslie3d 1.00 1.51 1.99 3.20 5.91
444.namd 1.00 1.11 1.37 3.59 5.53
447.dealII 1.18 2.98 3.77 — —
450.soplex 1.02 1.46 1.64 2.85 3.88
453.povray 1.38 3.51 4.74 7.44 13.05
454.calculix 1.00 1.33 1.80 3.26 5.51
459.GemsFDTD 1.01 1.39 1.70 2.36 4.55
465.tonto 1.19 2.34 3.21 5.41 12.75
470.lbm 1.00 1.05 1.12 1.90 2.60
482.sphinx3 1.04 1.98 2.45 12.38 15.01
CFP Avg 1.05 1.81 2.45 4.62 7.63
SPEC Avg 1.14 2.33 3.11 5.31 9.47

Table 5. Performance summary on the SPEC CPU2006 bench-
marks for DynamoRIO (DR), Umbra configured for byte-to-byte
shadowing (1B-1B), Umbra configured for byte-to-2-bit shadow-
ing (1B-2b), Valgrind base, and Valgrind performing shadow meta-
data mapping (map). Valgrind’s shadow mapping is byte-to-2-bit.
434.zeusmp and 447.dealII fail to run under Valgrind.

We also measure the running time of the Valgrind base and
of Valgrind’s MemCheck tool [24] modified to only perform ad-
dress mapping (byte-to-2-bit). The resulting data are presented in
the fifth (base) and sixth (map) columns of Table 5. The Val-
grind base performs extra operations targeted at shadow value tools
that the DynamoRIO core does not and which Umbra must per-
form itself, making the core-to-core comparison less meaningful
than the Umbra-to-Valgrind-with-mapping comparison. Valgrind’s
mapping overheads are much higher than Umbra’s, ranging from
2x to over 30x, with an average 8.47x slowdown 2.

2 434.zeusmp and 447.dealII are not included as they fail to run under
Valgrind



4.3 Optimization Impact
We next conduct a set of experiments to quantify the impact of our
optimizations described in Section 3. These experiments perform
translation for a 1-byte to 1-byte mapping. Figure 5 shows the
performance normalized to native execution of base DynamoRIO
and of each optimization added to the set of prior optimizations.

ODynamoRI O1 O2 O3 O4 O5 O6
CINT 1.25 17.08 16.58 13.64 9.13 4.08 3.03
CFP 1.05 14.88 14.16 10.72 7.67 2.27 1.81
CPU2006 1.14 15.82 15.19 11.97 8.29 3.05 2.33
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Figure 5. Impact of optimizations from Section 3, applied cumu-
latively: O1 (Thread Private Mapping Table), O2 (Hashtable), O3
(Last Unit Check), O4 (Reference Cache), O5 (Context Switch Re-
duction), and O6 (Reference Cache Group).

The figure shows that O2 (Hashtable) has only a marginal
improvement over O1 (Thread-Private Mapping Table). In these
benchmarks the mapping table is small (< 10 entries), making the
table walk inexpensive. O2 would show more improvement over
O1 with a larger mapping table. O3 (Last Unit Check) and O4
(Reference Cache) take advantage of application reference locality
on the overall application as well as individual instructions, which
improves performance significantly: they halve the overall running
time on average. O5 (Context Switch Reduction) has the biggest
impact and further halves the runtime overhead. The context switch
overhead is expensive, as register saving and restoring requires
memory load and store operations. Adding several extra memory
operations, especially stores, for every application memory refer-
ence can easily saturate the memory bus and cause long delays. O6
(Reference Cache Group) removes another 20% of running time
by further taking advantage of reference locality over basic blocks
and avoiding redundant runtime checks via static analysis. When
all optimizations are applied, the overall average runtime overhead
is reduced to 133% over native execution.

To better understand the quality of these optimizations, we
collect a number of statistics about the benchmark characteristics
and the optimization effects. Table 6 presents the ratio of these
statistics relative to the total number of application instructions
executed.

The flags stolen and registers stolen ratios show the effect of
the Context Switch Reduction optimization (O5). The flags stolen
ratio is reduced from 41.79% (save and restore on every memory
reference) to 2.55% and the register save and restore is reduced
from 41.79% to 8.20%. This significantly reduces the pressure on
the memory bus and thus reduces runtime overhead, and explains
why context switch reduction has the biggest improvement. The
reference cache check ratio shows that the Reference Cache Group
optimization (O6) effectively removes 19% (41.79% - 22.76%) of
redundant reference cache checks.

We also collect the hit ratio of our cache lookups, which are
presented in Table 7.

We expected the Last Unit Check to experience some thrash-
ing when an application accesses alternating memory units, e.g.,
interleaving stack and heap accesses. In contrast, each instruction
usually accesses the same type of memory and thus the same mem-
ory unit. Table 7 confirmed our expectations. The Reference Cache

Metric CINT CFP All
memory references 40.34% 42.88% 41.79%
flags stolen 3.17% 2.07% 2.55%
registers stolen 11.44% 5.77% 8.20%
ref cache checks 25.70% 20.56% 22.76%

Table 6. Optimization statistics normalized to the total number of
application instructions executed.

Metric CINT CFP All
ref cache hit ratio 99.91% 99.94% 99.93%
last check hit ratio 66.26% 69.98% 68.93%

Table 7. Hit ratio of the Reference Cache (O4) and the Last Unit
Check (O3).

hit ratio is extremely high (> 99.9%), while the Last Unit Check
hit ratio is much lower.

4.4 Impact of Shadow Metadata Size
The shadow metadata size chosen can significantly impact the map-
ping overhead. To evaluate that impact we measure the following
shadow sizes:

1B-to-1B maps 1 byte of application memory to 1 byte of shadow
memory. This is the fastest mapping because only a simple
offset is required.

1B-to-4B maps 1 byte of application memory to 4 bytes of shadow
memory. This requires one left shift and one addition, as shown
in Section 2.

4B-to-1B maps 4 bytes of application memory to 1 byte of shadow
memory. It is similar to the 1B-to-4B mapping but uses a right
shift.

1B-to-2b maps 1 byte of application memory to 2 bits of shadow
memory. It first performs a 4B-to-1B mapping and then uses
an extra register to hold the bit position. This incurs additional
overhead for register stealing and bit position calculation.

1B‐1B 1B‐4B 4B‐1B 1B‐2b
CINT 3.03 3.76 3.79 3.98
CFP 1.81 2.26 2.26 2.45
CPU2006 2.33 2.90 2.92 3.11
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Figure 6. Performance of different shadow metadata sizes, listed
as application size-to-shadow size where B is byte and b is bit.

Figure 6 shows the normalized performance. As expected, the
1B-to-1B mapping has the best performance, and 1B-to-2b has the
worst, a 30% slowdown compared to 1B-to-1B.

4.5 Code Cache Expansion
In the experiments above, the instrumented code is organized into
three stages (Section 3.2.3). The Reference Cache check (O4) is



inlined and only one register is stolen for use. The Thread-Private
Table walk (O1), Hashtable search (O2), and Last Unit Check (O3)
are implemented as a shared lean procedure, where two registers
are used. The global mapping table lookup is implemented as a
C function, where a full context switch is required. Umbra’s code
cache size on average is about 4 times that of the base DynamoRIO.
In contrast, inlining all instrumented code instead of using a 3-stage
layout would result in a more than 100 times code expansion.

4.6 Example Tool
We used Umbra to build a sample shadow value tool called SDRD,
or Shared Data Reference Detector. This tool identifies which
memory is referenced by which threads. We designed the shadow
metadata as a bitmap, representing each thread with a different bit.
On every application memory access, Umbra translates the appli-
cation memory address into a shadow memory address and passes
it to SDRD. By setting the appropriate bit for the current thread
in the shadow metadata, SDRD is able to tell which threads have
accessed this data. We use a 4-byte application memory to 4-byte
shadow metadata mapping scheme (4B-to-4B), so we are able to
keep track of up to 32 threads per 32-bit word accessed. If the ap-
plication access size is smaller than 4 bytes we align it to 4 bytes,
resulting in a single-word granularity.

The implementation of SDRD using Umbra is straightforward.
We fill the umbra_client_t data structure with appropriate values
as shown below:

num_regs = 1; /* 1 scratch register required */
app_size = 32; /* 4-byte application data */
shd_size = 32; /* 4-byte metadata */

SDRD’s instrument_update function inserts 3 metadata up-
date instructions for every application memory reference, as shown
in Figure 7. reg is the register provided by Umbra that will point
to the metadata address during execution. thread_bit is a thread
private variable that holds a bitmap with only one bit set to rep-
resent the thread itself. This bitmap can be a constant when using
DynamoRIO’s thread-private code caches. The first metadata up-
date instruction is a test instruction 3 that checks via the metadata
pointed at by reg whether the current thread has accessed the ap-
plication data being accessed. If it has not, the metadata is updated
using an atomic or operation. If the thread has already accessed
this application data, the metata write is avoided. As shown below,
the cost of the check is significantly less than the cost of performing
a metadata write every time.

test [reg], thread_bit
jnz skip_update
or [reg], thread_bit => [reg]

skip_update:
...

Figure 7. Instrument metadata update code for SDRD.

In addition to instrument_update, SDRD also implements a
callback function for the event shadow_memory_delete in order
to report which data has been accessed by which thread when the
memory is de-allocated.

We evaluate the performance of SDRD using the SPLASH-
2 benchmarks with 8 threads on our 8-core system. As shown
in Figure 8, Umbra works well on multi-threaded applications.
Umbra by itself causes a 3x slowdown, which is consistent with the
slowdown measured from the single-threaded SPEC benchmarks.

3 The test instruction computes the bit-wise logical AND of two operands
and sets the conditional flags according to the result. The result is then
discarded.
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Figure 8. Performance of base DynamoRIO (DR), shadow meta-
data mapping (Umbra), and our Shared Data Reference Detector
shadow value tool (SDRD) performing metadata updates.

The metadata updating by SDRD incurs another 3x slowdown.
The water-spatial benchmark shows a larger slowdown because its
running time is too short (< 0.3 second) for Umbra’s initialization
overhead to be amortized. We found that using the test-and-set
approach shown is much faster than directly updating the metadata
without testing, which incurs an average 30× slowdown. This is
primarily because the metadata update can easily cause expensive
cache conherence maintenance and memory bus saturation.

5. Related Work
Existing shadow value tools employ shadow metadata mapping
schemes consisting typically of either one or two levels of trans-
lation. When using one level of translation, the full user address
space is mapped into a single shadow address space. This simpli-
fies translation, requiring only an offset and potentially a scale if the
shadow metadata size does not match its corresponding application
size. However, using a single shadow region sacrifices robustness,
as it requires stealing a large chunk of space from the application.

TaintTrace [5], Hobbes [3], and Eraser [23] all use one-level
translation with one shadow byte per application byte. They as-
sume a 3GB 32-bit user address space and take 1.5GB for shadow
memory. Their shadow metadata mapping involves a simple offset
and incurs little overhead. However, claiming a full half of the ad-
dress space gives up flexibility and presents problems supporting
applications that make assumptions about their address space lay-
out. Such a design is problematic on operating systems that force
various structures to live in certain parts of the address space or use
different address space splits for kernel versus user space.

LIFT [20] uses one-level translation, but shadows each appli-
cation byte with only one shadow bit. Consequently its mapping
uses both a scale and an offset, and its shadow region only requires
one-eighth of the user address space.

Several shadow value tools, like Umbra, use two-level transla-
tion schemes for flexibility. Using two levels gives up some perfor-
mance but provides support for a wider range of applications and
platforms. Unlike Umbra, other tools map the entire address space
uniformly, rather than mapping regions based on application mem-
ory allocation.

MemCheck [24] employs a two-level translation scheme [16].
Memcheck’s scheme was designed for a 32-bit address space. It
splits the space into 64K regions of 64KB each. A first-level table
points at the shadow memory for the 64KB region containing the
address in question. Memcheck originally kept all of its shadow
memory in a single contiguous region but was forced to split it up
in order to support a wider range of applications and platforms,



due to the limitations discussed earlier with claiming too large of a
contiguous fraction of the application address space.

Memcheck uses several optimizations to reduce overhead, but
most of them are specific to Memcheck’s particular metadata se-
mantics. It saves memory and time by pointing shadow memory re-
gions that are filled with a single metadata value to a shared shadow
memory structure. For aligned memory accesses it processes all
bytes in a word simultaneously. And it maintains bit-level shadow-
ing granularity without requiring shadow bits for every application
bit by compressing the shadow metadata to only use such granular-
ity when byte-level granularity is not sufficient.

Memcheck extends its scheme to 64-bit address spaces with a
larger first-level table that supports the bottom 32GB of the address
space. It uses a slower translation path for addresses above 32GB,
and attempts to keep as much memory as possible in the lower
32GB. The Memcheck authors report problems with their approach
on other platforms and suggest it may need improvement [16]: “It
is unclear how this shadow memory scheme can best be scaled to
64-bit address spaces, so this remains an open research question for
the future.”

The TaintCheck [18], Helgrind [12], and Redux [15] tools are
all built on the same Valgrind [17] dynamic binary instrumentation
platform as Memcheck. They all use the same two-level translation
scheme as Memcheck.

pinSel [14] uses a two-level translation scheme similar to Mem-
check’s, but with 4KB shadow units rather than 64KB units. Visu-
alThreads [9] uses 16MB units in its two-level approach.

DRD [22] uses a nine-level table to hold its shadow memory,
which shadows memory accessed during each unit of time.

Commercial shadow value tools include Purify [21], Intel Par-
allel Inspector [11], Insure++ [19], and Third Degree [10]. Unfor-
tunately, their shadow translation details are not published.

EDDI [29] shadows each memory page with a shadow page that
stores for each application byte whether a data watchpoint has been
set. A table is used to locate the shadow page for each memory
page, with multiple levels used for 64-bit.

MemTracker [27] and HARD [30] propose using additional
hardware to provide low-overhead shadow value tools: memory
access monitoring (but not propagation) for MemTracker, and data
race detection for HARD. The introduced hardware is targeted to a
specific tool in each case.

Metadata management and propagation directly in hardware [7,
8, 26] imposes limitations on the metadata format but can reduce
overheads significantly for tools that can use the supported formats.
Other hardware proposals support a wider range of shadow value
tools by targeting the costs of dynamic binary instrumentation [6,
31] or providing metadata support independently of the metadata
structure [4].

Umbra is implemented entirely in software using the Dy-
namoRIO [2] dynamic binary instrumentation system. It could be
implemented using other binary instrumentation systems such as
Pin [13] or Valgrind [17].

6. Conclusion
In this paper we presented Umbra, the first shadow memory map-
ping scheme that supports both 32-bit and full 64-bit address spaces
efficiently. This flexible and scalable approach does not rely on
any specific operating system or architectural features or specific
shadow metadata sizes or semantics. We have described several
novel optimizations that improve the speed of Umbra’s shadow
metadata mapping and detailed the contributions of each optimiza-
tion.

This paper focused on efficient shadow metadata mapping. Fu-
ture work includes providing a flexible interface for shadow meta-
data updating to allow building a wide range of tools with our

framework. We are also continuing to improve the mapping per-
formance of Umbra.

We have implemented and evaluated Umbra and shown that it is
three times faster than the most widely-used shadow value frame-
work today, Valgrind. We hope that by reducing the prohibitive
overhead of shadow value tools we can increase the frequency with
which these powerful tools can be deployed.
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