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Abstract. Application debugging is a tedious but inevitable chore in
any software development project. An effective debugger can make pro-
grammers more productive by allowing them to pause execution and in-
spect the state of the process, or monitor writes to memory to detect data
corruption. This paper introduces the new concept of Efficient Debug-
ging using Dynamic Instrumentation (EDDI). The paper demonstrates
for the first time the feasibility of using dynamic instrumentation on-
demand to accelerate software debuggers, especially when the available
hardware support is lacking or inadequate. As an example, EDDI can
simultaneously monitor millions of memory locations without crippling
the host processing platform. It does this in software and hence provides
a portable debugging environment. It is also well suited for interactive
debugging because of its low overhead. EDDI provides a scalable and ex-
tensible debugging framework that can substantially increase the feature
set of current debuggers.

1 Introduction

Application debugging is an inevitable part of any software development cycle.
It is increasingly important in modern day programming practices because of
the growing complexity of software and hardware.

Software debuggers often run as separate processes that attach to user ap-
plications and trace through runtime events to detect execution anomalies. It is
often that case that runtime errors arise because a program’s memory is somehow
corrupted. Common examples include out-of-bounds accesses and buffer overflow
bugs which lead to null-pointer exceptions or the execution of illegal branch in-
structions. Other errors include the use of uninitialized variables, and data races
in the case of shared-memory multi-threaded applications. All of these errors are
notoriously difficult to discover and diagnose because it is often not clear when
the memory corruption occurred, and which instructions were responsible.

A debugger allows the programmer to inspect the code at the site of an
anomaly and trace back in the program stack to derive more clues about the
cause of the problem. A particularly useful debugging feature that helps with
memory corruption bugs is the data breakpoint, also known as the watchpoint.



A watchpoint pauses program execution when an update to a specific memory
location is encountered. Watchpoints are similar to instruction breakpoints that
allow the user to pause execution at specific instructions.

1.1 Challenges faced by current approaches

Data breakpoints are very expensive to implement without architectural support
because they require watching all updates to memory: every write (store) to
memory triggers a lookup of the store’s address in the watchlist. The watchlist
consists of all “watched” memory locations that are of interest to user.

The GNU Debugger (GDB) [1] on x86 architectures uses four debugging
registers to accelerate the watchpoint debugging feature. The hardware-assist
leads to imperceptible or acceptable slowdowns. With hardware-assist forcibly
disabled, we observed that even a simple program slows down by a factor of a
thousand when a single watchpoint is set.

Hardware-assist has its limitations however. In case of GDB, when the watch-
list consists of more than handful of addresses, GDB is forced into a single-step
mode that scans a linked list of breakpoints and watchpoints following the ex-
ecution of every instruction. The performance quickly deteriorates and the cost
becomes prohibitively expensive for interactive debugging. As a result, a large
number of watchpoints is generally not practical and their use, while potentially
very helpful, remains quite limited in scope.

Furthermore, the feature sets offered by most existing standalone debuggers
are either not sufficiently rich, or exhibit high overhead and poor scalability
for practical and ubiquitous use. There are some advanced debuggers that can
manage the performance penalties with static program analysis and advanced
compilation [2–4], but they require additional compilation steps, and generally
cannot apply to precompiled binaries or dynamically linked code. These factors
may impede their adoption by programmers.

1.2 A new and practical alternative

This paper contributes a new approach to debugging, with a primary emphasis
on debugging with watchpoints. We leverage advances in binary instrumentation
and code manipulation tools [5–8] to provide an effective and efficient debugging
framework that can substantially increase the feature set of standard off-the-shelf
debuggers.

We present Efficient Debugging using Dynamic Instrumentation (EDDI). We
demonstrate how to lower the cost and frequency of checking for runtime anoma-
lies and breakpoint conditions using a unique combination of on-demand dy-
namic instrumentation and a set of simple and carefully engineered optimizations
and heuristics. We believe this is the first paper to demonstrate the feasibility of
using a dynamic binary instrumentor in an interactive debugging environment.

The paper describes our prototype implementation of EDDI using a state-
of-the-art binary instrumentation infrastructure, and an off-the-shelf debugger,
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namely GDB. The prototype inherits the properties of the binary instrumentor
to run on off-the-shelf IA32 processors. It can handle dynamically linked and
stripped binaries without the need for application source code or recompilation.

In the context of debugging using watchpoints, we demonstrate that we can
monitor more than a million data locations, with a slowdown of less than 3x
compared to native execution. The low overhead makes EDDI practical for in-
teractive debugging. This is in contrast to existing tools that use dynamic instru-
mentation for program analysis and bug discovery [9, 10] but suffer from high
overheads. For example, MemCheck [9] – which can detect uninitialized memory
reads, writes to unallocated memory, and other memory use errors – can incur
slowdowns between 10x and 30x compared to native execution. Such tools are
better suited for regression testing than interactive debugging.

The ability to monitor a large number of memory locations significantly
broadens the scope of debugging with watchpoints, and allows for a lot of ver-
satility in defining a wide range of watchlists. For example, a user can choose
to watch (1) objects of a specific size or type, (2) objects allocated from spe-
cific call sites, (3) entire data structures (e.g., arrays, records, graphs), and (4)
reads from addresses written by specific instructions. This new ability leads to
potential uses in constraint and consistency checks on heap data structures, data
race detection in multi-threaded programs, taint analysis for security analysis,
and many other scenarios. We highlight and evaluate a few practical debugging
scenarios to concretely demonstrate some of the new debugging capabilities af-
forded by EDDI. Specifically, we dynamically watch the return addresses of all
functions, and break if an instruction modifies a return address. This scenario
is useful for detecting malicious attacks that attempt to hijack a program’s ex-
ecution. Second, we identify all static instructions that reference heap objects
of a particular types. This particular use scenario can be useful for dynamic
pointer analysis. Lastly, we use EDDI to discover all runtime read-accesses from
uninitialized heap location, and similarly, we use watchpoints to detect buffer
overflow errors.

The contributions of the paper are summarized as follows:

– We designed and engineered EDDI, the first on-demand accelerated debugger
using binary instrumentation.

– We demonstrate that EDDI provides an efficient and scalable implementa-
tion of an important debugging facility, namely data breakpoints (watch-
points).

– We show that EDDI is practical for interactive debugging, and its ability to
monitor millions of memory locations provides new debugging capabilities.

2 Interactive Debugging with EDDI

Our goal is to substantially reduce the overhead associated with application de-
bugging so that it is possible to implement new debugging capabilities that can
substantially ease the burden on users when they are tracking down program-
ming errors. Our approach with EDDI is to use dynamic instrumentation with
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Fig. 1. The EDDI interactive debugging infrastructure.
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an off-the-shelf debugger to provide on-demand acceleration and efficient exe-
cution under a debugger. An interactive debugger with EDDI consists of four
components as illustrated in Figure 1.

The first component is the user application that is interpreted using a bi-
nary instrumentation and code manipulation system. We use DynamoRIO [8],
although Pin [6] or other systems can also be used. DynamoRIO is a transpar-
ent runtime code manipulation system that can execute and manipulate real
world applications running on IA-32 hardware. It works under both Linux and
Windows. When an application is running with DynamoRIO, it is copied into a
thread-private code cache one basicblock at a time, and then runs directly from
the code cache. When some basicblocks on a common path become “hot”, they
are stitched together to form a single-entry multiple-exits trace, and promoted
to a trace cache. The basicblock and trace caches are collectively called the code
cache. DynamoRIO uses thread-private code caches, and this allows for tailoring
the instrumentation per thread when necessary. We modify the signal handler in
DynamoRIO to intercept and process all runtime signals before relaying them
to and from the user application.

The second component is the debugger. It runs as a separate process, and
provides typical debugging functionality. We use GDB as-is for this purpose.

The third component is the front-end. It functions as the interface between
the user, the debugger, and the instrumentation layer. Programmers use the
front-end to relay commands to the debugger, and the debugger relays output
back to the user through the front-end. Some commands are directly relayed
to a command interpreter that translates the commands into actions for Dy-
namoRIO. The front-end also consolidates the code manipulation carried out by
EDDI against the code mapping assumed by the debugger.

The command interpreter is the fourth component. It receives commands
from the front-end, and then collaborates with the debugger to instrument the
user application to implement the appropriate commands. For example, to set
a data breakpoint and then watch for updates to that memory location, EDDI
instruments store instructions in the program to check if the address being writ-
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ten to matches the address being watched1. EDDI uses a set of optimizations
and heuristics to reduce the instrumentation and runtime overhead of checking
breakpoint conditions and predicates.

3 Efficient Debugging using Dynamic Instrumentation:
Software Watchpoint

We believe that binary instrumentation can significantly improve the perfor-
mance of standard debuggers. In turn, this can lead to richer debugging features
that can improve programmer productivity. In this paper, our goal is an effi-
cient and scalable implementation of software watchpoints. We believe this work
enables new and potentially very powerful debugging capabilities, with likely
applicability in other use scenarios as well.

Watchpoints essentially require monitoring every memory read (load) and
write (store), and comparing the addresses against a list of watched addresses.
A basic monitoring approach using dynamic binary instrumentation adds new
instructions before every memory reference to perform the following tasks: (1)
determine the memory address referenced by the load or store, (2) check if ad-
dress is watched, and (3) raise a trap if the address is watched. We refer to
this scheme as full instrumentation (FI). A näıve implementation of this scheme
adds more than 10 instructions per static memory reference, and can degrade
performance by an average of 15x compared to native execution.

We refined this approach in two ways. First, we implemented a set of op-
timizations to substantially reduce the monitoring overhead as is detailed in
Section 4. Second, we used a coarse-grained monitoring scheme that first op-
erates at page granularity before switching to a more fine-grained monitoring
mode that inspects individual memory references. We call this coarse-grained
scheme partial instrumentation (PI).

The PI scheme is tuned for the common case: the majority of memory refer-
ences do not access watched locations. It focuses primarily on instructions that
may reference watched locations, and uses the page protection mechanisms in
the operating system to help identify those instructions. In this scheme, pages
that contain watched data are protected, and any instructions that try to access
these pages trigger a signal. The signal handler checks if the referenced address
is watched and takes appropriate action. The runtime overhead for PI is highly
dependent on the number of references to the protected pages because signal han-
dling involves expensive operating system mechanisms. As with the FI scheme,
we lower the PI overhead by taking advantage of dynamic instrumentation as is
described in Section 5.

In addition to the monitoring schemes, we pay particular attention to the
design of the watchlist. The watchlist is the data structure that records the
watchpoints. Since the watchlist is accessed on every memory reference, it is

1 EDDI will first attempt to use any available hardware-assist resources before falling
back on a more general software-only approach.
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important to design an efficient watchpoint organization and to implement a
fast and scalable query mechanism with reasonable space-time properties.

A linked-list watchlist organization is not practical since the time for a query
scales linearly with the number of watchpoints. An alternate strategy is to use
shadow tags [4, 11–13] to represent each byte in memory. If a tag is set, then the
corresponding byte in memory is watched. In this scenario, a watchpoint query
requires loading the appropriate tag and checking its status. The query cost for
this approach is constant and independent of the number of watchpoints.

In our work, we designed a new shadow tag based watchlists for efficient tag
lookup and with good scalability. The basic idea is to use an on-demand watch-
list. Each application memory page is associated with an equal sized shadow
page when necessary. The status of a byte in an application page is indicated by
the tag at the same offset in the associated shadow page (if the tag is zero, the
byte is not watched). We use a byte-long tag for byte-addressable memory. The
extra bits in each tag encode the status of adjacent bytes2.

A lookup table maintains the mapping between the application pages and
their shadow pages. On 64-bit architectures, a hierarchical lookup table is re-
quired, although an optimized one-level table is feasible via careful memory
allocation for shadow tags.

4 Optimizations for Full Instrumentation (FI)

The full instrumentation scheme inserts instructions to check the watchlist be-
fore every memory reference. Figure 2 shows the necessary instrumentation for
a single x86 store instruction mov esi -> [eax, ebx]. The instrumentation
performs the following tasks before the store:

1. Save any registers that are used or side-effected by the watchlist query.
2. Calculate the reference address and lookup its associated tag.
3. Checks if the tag is set to “watched”, and trap if it is.
4. Otherwise, restore the saved registers and continue execution.

In this example, the lookup table stores the displacement between the shadow
page and the accessed data. There are 20 new instructions in total. Instructions
1–6 and 16–20 save and restore the execution context. Instruction 7 obtains
the effective address in register ecx. Then the lookup table entry is identified
and checked by instructions 8–10. Instructions 11–14 check the tag found in the
shadow pages. If the lookup table entry is null, the tag check is skipped.

The näıve instrumentation described above suffers from a significant runtime
overhead. We implemented and applied a series of optimizations to systemat-
ically and drastically reduce that overhead. We group the optimizations into
three categories: previously published, watchlist-specific, and local analysis.

2 Special care is required to handle two adjacent memory addresses that span two
pages. Due to space limitations, we do not describe the encoding in any more detail.
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Fig. 2. Example instrumentation code.

01: mov %ecx [ECX_slot]    ! Steal registers
02: mov %eax [EAX_slot]
03: seto [OF_slot + 3]      ! Save oflag
04: lahf ! Save eflags
05: mov %eax [AF_slot]
06: mov [EAX_slot]   %eax ! Restore eax
07: lea  [%eax, %ebx] %ecx ! Get address

! Compute table index
08: shr %ecx, $12 %ecx ! Shift right
09: cmp table[%ecx, 4], $0 ! Check entry
10: je   SKIP_CHECK

! Check if tag is set to ‘watched’
11: add   %eax, table[%ecx, 4] %eax
12: testb $0xAA, [%eax, %ebx]   
13: jz AFTER_TRAP
14: trap                  ! Watchpoint trap
AFTER_TRAP:
15: sub   %eax, table[%ecx, 4] %eax

! Restore all
SKIP_CHECK:
16: mov [AF_slot] %eax
17: add  [OF_slot], $0x7f000000 [OF_slot]
18: sahf
19: mov [EAX_slot] %eax
20: mov [ECX_slot] %ecx

1. Previously published optimizations. We applied two optimizations published
by Qin et al. [12].

– Context Switch Reduction (CSR) performs register liveness analysis in each
basicblock to identify registers that can be safely used without requiring a
register spill and restore.

– Group Checks (GC) consolidates two consecutive memory reference checks
into a single check if there are no intervening instructions that affect the
address calculation of the second memory reference.

2. Watchlist-specific optimizations. The following two optimizations take advan-
tage of the watchlist design.

– Merged Checks (MC) aims to exploit the locality of memory references.
For example, two instructions in the same basicblock may access differ-
ent members of the same object (e.g., mov 0 -> [%eax + 4] followed by
mov 0 -> [%eax + 8]). In this case, a single shadow tag lookup is initiated
before the first reference. If the tag is zero, then neither location is watched.
Otherwise, the tag lookup is carried out for each reference individually.

– Stack Displacement (STK) aims to reduce the watchlist query for stack ac-
cesses that use the stack pointer. This optimization elides the mapping step
through the lookup table. This is achieved through a simple precomputation
step. When a thread is initialized, we allocate a shadow memory for the
application stack, and calculate the constant offset between the stack and
its corresponding shadow memory. Subsequently, when an instruction that
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accesses the stack via the stack pointer is encountered, the instrumentation
code directly calculates the displacement to the shadow tag without going
through the lookup table.

3. Local optimizations.

– Local Variables Check Elimination (LVE) eliminates tag checks on local
scalar variables referenced via the stack pointer (e.g., mov 0 -> [esp + 20])
since they are amenable to static analysis.

There are many other optimization that can further reduce the monitoring
overhead. Our purpose is not to be exhaustive but rather to demonstrate that
online memory reference monitoring can be achieved with reasonable overhead.

5 Partial Instrumentation (PI)

In addition to the fine-grained instrumentation approach, we rely on a coarse
grained partial instrumentation technique to further manage the runtime over-
head associated with monitoring memory updates. With PI, we only instrument
memory references that may reference watched locations. Partial instrumenta-
tion optimizes for the common cases where references do not access watched
locations.

PI relies on the operating system page protection mechanism to switch be-
tween a coarse-grained mode and a fine-grained mode that checks memory in-
structions with greater scrutiny. When a watchpoint is set, we make a twin copy
of the pages containing that watchpoint. The access rights of the original pages
are then set to be protected. During the program execution, if an instruction
I references an address on the watched pages, a SIGSEGV signal is raised. Our
signal handler catches that signal, and subsequently replaces the code fragments
containing the instruction I with a new code fragment that includes additional
instrumentation. The instrumentation serves dual roles. First, it performs any
necessary tag checks. Second, it performs reference redirection so that the instruc-
tion I accesses the copied pages instead of the protected pages, hence avoiding
future SIGSEGV signals from the same instruction.

PI is suitable for many situations, especially when monitoring data accesses
to the heap. For example, consider the case where a user wants to monitor all
references to objects allocated from a specific call site. With PI, we can (1)
allocate memory from a special pool of protected pages, (2) update the lookup
table, and (3) return the allocated address to the application. Meanwhile, we
allocate the twin page from another pool such that the difference between the
corresponding locations of a data object in both pools is a constant Dp. This
simplifies the redirection code. Figure 3 shows an example of reference redirection
for the x86 instruction mov 0 --> [%eax + 0x10], where Dp is 0x30000.

As is the case with full instrumentation, it is possible to apply more opti-
mization to further reduce the overhead associated with partial instrumentation.
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Fig. 3. An example of reference redirection.

mov %ecx [ECX_SLOT]    ! steal ecx

lea [%eax+0x10] %ecx ! calculate address
...                       ! save eflags

shr %ecx, 20 %ecx ! right shift
cmp table[%ecx], $0       ! check table entry
je LABEL_ORIG
...                       ! check tag status
...                       ! restore eflags and ecx

mov 0 [%eax + 0x030010] ! redirected reference
jmp LABEL_NEXT

LABEL_ORIG:
...                       ! restore eflags and ecx

mov 0 [%eax+0x10]      ! access original location

LABEL_NEXT:
...                       ! continue execution

6 Evaluation and Results

We measured the performance overhead associated with EDDI in the context of
software watchpoints. We conducted a set of experiments to quantify the impact
of our optimizations for full and partial instrumentation. We also designed some
experiments to showcase various debugging scenarios that make use of the large
number of watchpoints that can be monitored with EDDI.

We ran all of our experiments on a 2.66 GHz Intel Core 2 processor with
2 GBytes of RAM. The operating system is Linux Fedora Core 4. We used the
full SPEC CPU2000 [14] benchmark suite and the reference input workloads.
All benchmarks were compiled with GCC 4.0 using -O3. We used a shadow page
lookup table with 220 entries. We used shadow pages that are 4 KBytes in size
to match the default Linux page size.

Results for FI. Figure 4 compares the native performance of each bench-
mark to the same benchmark run with DynamoRIO and the full instrumentation
scheme (along with its accompanying optimizations). In this set of experiments,
there are no user-defined watchpoints (i.e., all shadow tag bits are zero). We are
simply measuring the instrumentation overhead attributed to the monitoring of
memory accesses and watchlist queries.

We report the results for full instrumentation with common optimizations
(CSR and GC), merged checks (MC), stack displacement (STK), and local vari-
able check elimination (LVE). The performance results are normalized to native
execution, and hence a value greater than one indicates a slowdown, with smaller
numbers reflecting lower runtime overhead.

The common optimizations reduced the runtime overhead from an average
slowdown of 15x in the unoptimized instrumentation scheme (data not shown),
to an average of 5x. The addition of MC reduced the overhead further. MC is
especially effective on benchmarks with good temporal and spatial locality (e.g.,
252.eon). Performance improvement due to STK were mixed. This particular
optimization reduces the opportunities for merged checks. The LVE optimization
improved performance significantly because it removes all checks for scalar (i.e.,
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Fig. 4. Impact of optimizations on FI.
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BenchmarksFig. 5. Performance of FI with different watchlist configurations.
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non-array) local variables. Overall, FI with all of our optimizations incurs an
average slowdown of 2.59x compared to native execution.

Next, we measured our system performance using three watchlist configu-
rations: no watchpoints3, watch all function return targets, and watch all data
locations. In an actual debugging scenario, data breakpoints that are triggered
alert the user and the debugger interrupts execution and waits for additional
commands from the user. In our experiments, however, when a watchpoint was
triggered, the instruction that accessed the watched location was merely marked
and execution continued. Figure 5 shows the results normalized to native execu-
tion time. As expected, the runtime overhead increased as the number of watch-
points increased. The low additional overhead that is observed when watching
all return targets is due to the efficacy of the STK optimization. In the worst
case, the average overhead is 3.68x when all memory locations are watched.

Results for PI. We studied the performance implications of the partial instru-
mentation scheme using several SPEC INT benchmarks. Two benchmarks were
ignored: 197.parser allocates a large memory pool at the start of execution,
and 254.gap requests a chunk of memory only to free it immediately without
using it.

3 This set of data point corresponds to the fourth bar in each set of bars from Figure 4.
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Table 1. Runtime overhead using PI.

Benchmarks Native PI Overhead No. of Watched No. of
(sec) (sec) PI / Native Redirects Objects SIGSEGV

164.gzip 24.379 26.189 1.074 1.45×108 20423 45

175.vpr 48.346 50.605 1.047 1.04×106 10000 76

176.gcc 7.980 10.026 1.256 1.51×106 1 22

181.mcf 53.243 80.659 1.515 1.08×1010 1 468

186.crafty 58.777 249.777 4.250 2.77×108 37 443

252.eon 35.961 41.470 1.153 3.50×101 1 8

253.perlbmk 9.101 24.489 2.691 7.69×107 1 249

255.vortex 29.940 47.582 1.589 1.65×109 10 219

256.bzip 27.598 50.837 1.842 9.01×109 7 541

300.twolf 155.725 161.442 1.037 2.78×105 1100 470

We selected watchpoints by intercepting allocation requests and randomly
deciding to watch the allocated objects. Objects that are watched were allocated
from a designated memory pool with protected pages. This approach allowed
us to easily define watchpoints at runtime without any user intervention. The
results are summarized in Table 1. The column labeled “Watched Objects” lists
the number of watched heap objects. It is worthy to note that these objects are
not necessarily uniform (i.e., they may vary in type and size).

The second column in Table 1 reports the native execution time, and the third
column shows the execution time when using EDDI and partial instrumentation.
The last column reports the number of SIGSEGV signals that were caught (due to
accesses to watched regions), and the column labeled “No. of Redirects” reports
the number of subsequent reference redirections that occurred. The overhead
in PI is mainly due to the redirection mechanism. The benchmarks 181.mcf,
175.vpr, and 256.bzip have 109 or more redirections with slowdowns ranging
from 51% to 84%. The two benchmarks with the highest overhead, 186.crafty
and 253.perlbmk, execute a large number of string operations that require a
relatively more heavyweight redirection mechanism. The benchmarks 176.gcc
and 252.eon incur a large DynamoRIO overhead (not shown). The added PI
overhead is these two benchmarks and the remaining three is less than 7%.

In general, partial outperforms full instrumentation. The former optimizes for
the common cases and only instruments a small number of static instructions.

Space Overhead. The size of the shadow memory depends on the number
of watchpoints. Since we use a demand-driven watchlist, we expect the shadow
memory footprint to be typically small. In the worst case when all memory loca-
tions are watched, FI doubles the total memory footprint since every application
page requires a shadow page. The PI scheme needs additional memory since it
also clones the application pages. Hence the total memory footprint grows three-
fold when watching all heap data.

There is also some instruction memory overhead since the watchlist moni-
toring adds instrumentation code. In practice, this is usually small compared to
the size of data memory. Note that these are virtual memory overheads, and our
results show that the spatial footprints remain manageable. We do not expect
the space overhead to be a serious concern on 64 bit processors.
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Debugging Scenarios. We believe that EDDI can be a useful tool for un-
derstanding program behavior and discovering software bugs. Here we highlight
several debugging scenarios that demonstrate how a user may use the large num-
ber of watchpoints afforded by EDDI.

– We used EDDI to discover all the instructions that access the return ad-
dresses of functions. To do this, a watchpoint is automatically set on the
return address of a function when it is called. This watchpoint is cleared
when the function returns. Note that such a task is nearly impossible to
achieve in a standard debugger like GDB. The middle set of bars in Figure 5
show the expected performance for the SPEC benchmarks. Interestingly, we
found that besides the return instructions, there are several functions such
as setjmp that also read the return address.

– We also used EDDI to perform a kind of dynamic pointer analysis. In par-
ticular, using 181.mcf as an example, we watched all 33,112 instances of
the node data type and identified the 468 static instructions that referenced
these node objects 1.08× 1010 times during execution.

– A common programming error is the use of uninitialized variables. We used
EDDI to detect such occurrences by replacing calls to calloc with malloc
in 181.mcf. Unlike calloc, malloc does not initialize the allocated mem-
ory. We used EDDI to discover reads to uninitialized values by marking all
allocated memory as watched. Once an object is initialized, it is removed
from the watchlist. EDDI reported all reads to uninitialized memory loca-
tions correctly. As an example, the first uninitialized read in 181.mcf oc-
curs 0.001 seconds from the start of execution. EDDI reports the error in
0.037 seconds, and overall, the instrumented execution is 83% slower using
PI and 250% slower using FI.

– The last use scenario that we investigated was inspired by software secu-
rity attacks. We used EDDI on a set of benchmarks for buffer overflow
attacks [15]. By placing watchpoints on buffer boundaries, EDDI success-
fully identified all offending instructions. By setting watchpoints on key lo-
cations that include return addresses, stack frame pointers, and function
pointers, many kinds of intrusion schemes can be detected. Furthermore, be-
cause EDDI monitors all instructions executed in user mode, it will discover
any buffer overflows that occur in shared libraries as well.

The above use-cases are not exhaustive. The ability to watch large and vari-
able sized regions of memory efficiently is very powerful. We believe that EDDI
affords new capabilities and potentially new approaches for debugging.

7 Related Work

Application Debugging. There are many software, hardware and hybrid tech-
niques for application debugging, especially for detecting memory bugs. Hard-
ware schemes such as SafeMem [16], iWatcher [17], and MemTracker [18] are
geared toward low overhead detection mechanisms of inappropriate memory uses.
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DISE [19] (Dynamic Instruction Steam Editing) is a general hardware mecha-
nism for interactive debugging. HeapMon [20] is a hardware/software approach
for detecting memory bugs with a helper thread. An important drawback of
these techniques is that they require specialized hardware.

There are many software tools use dynamic instrumentation to discovery
memory related bugs. For example, Purify [21] and MemCheck [9] are two widely
used software tools for discovering memory problems. However, their significant
overhead make them unsuitable for interactive debugging purposes. Tdb [22] is
a tool that integrates dynamic instrumentation with GDB. However, the paper
only describes how to handle the code mapping between the application code
and the code cache, and uses code breakpoints as a demonstration vehicle. In
contrast, EDDI encompasses instruction and data breakpoints and can monitor
memory operations efficiently.

Software Watchpoint. Watchpoint is an important debugging facility that
helps users identify data corruption bugs. Almost all state-of-the-art proces-
sors provide limited hardware watchpoints facilities. There has also been several
proposals in the past on how to implement software watchpoints. They can be
generally classified as three approaches: page protection, trap patching, and code
patching. Wahbe [3] and Roberts [23] both compared the above implementation
strategies, and made the same conclusion that code patching has the lowest
overhead. Wahbe then proposed an efficient implementation of software watch-
points [4] using code patching and static analysis. However, that work could not
be used on shared libraries. Copperman and Thomas [2] extended the work to
use a post-loading technique to insert checks into an executable and solve the
shared library issue. EDDI can monitor all memory accesses efficiently. In addi-
tion, EDDI’s optimized page protection strategy outperforms the code patching
approach in certain situations.

Another interesting approach proposed by Keppel [24] is to use checkpointing
to discover data updates, but we did not find any implementation details or any
results on this work. There is a published patch to MemCheck in Valgrind [25] to
perform watchpointing. However, the watchpoints are organized in a linked-list
and performance scales very poorly. This clearly was not designed to operate at
the scale that we envision for EDDI.

Shadow Memory. Shadowing memory is important for efficient software watch-
points. Cheng et al. [11] suggested splitting the address space with half of it used
for shadow memory. This approach simplifies the address calculation for locating
the tag in the shadow memory to a single add. However, this is also the most
space consuming proposal. Wahbe et al. [4] suggested a bit-map approach that
associates a one-bit tag to every 4 bytes. On byte-addressable architectures like
the x86, the required space overhead is 12.5%, or 512 MBytes for a 32-bit ad-
dress space [12]. Unfortunately, on 64-bit architectures, this scheme requires 261

contiguous bytes. MemCheck [13] use a two-level table to organize the shadow
memory that is similar to our approach. However, our approach is more flexible,
and allows for a more efficient tag lookup.
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8 Conclusion

The state of debugging technology has largely remained unchanged for more than
a decade, and many programmers still rely on the “debug by printing” approach
to track down and resolve software bugs. As software becomes larger and more
complex, new approaches are required to improve programmer productivity. We
believe that the union of traditional debuggers and binary rewriting systems can
bring about many new debugging features and techniques. Our contribution in
this paper is to show the viability of such an approach.

We presented EDDI, a debugging framework that uses on-demand dynamic
instrumentation and runtime optimizations to accelerate and extend features
found in traditional debuggers. We showed how EDDI can be used to imple-
ment a data watchpoint facility that allows users to set orders of magnitude
more watchpoints than is practical today. EDDI does not rely on any specialized
hardware, and is evaluated in this paper using several SPEC2000 benchmarks
running on an Intel Core 2 machine. The results show that the average overhead
is 3x, which is low enough to make EDDI practical for interactive debugging. Be-
sides a large number of variable sized watchpoints, EDDI also provides dynamic
event handling capability and customized trigger actions. We highlighted several
practical uses of EDDI in debugging, program analysis and security. Combined
with the orthogonal effort of ‘reversible’ debugging [26], we believe EDDI can
contribute to powerful new ways of debugging software.
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